
Ilove soap bubbles. They’re beautiful, delicate, and
though they live only briefly, it’s a glorious moment.

They float on the air, brilliant colors wobbling over their
surface, and when they pop into nothingness, it’s just an
opportunity to make more bubbles!

This issue and next I’ll talk about the chemistry,
physics, and computer graphics of soap bubbles. Here
I’ll focus on the physics of soap films, which are, after
all, what bubbles are made of. We’ll see what happens
when soap dissolves in water and discuss some surpris-
ing properties of soap films. With this grounding in how
films work, in the next issue I’ll discuss how they give
rise to the brilliant colors and beautiful 3D clusters that
we associate with soap bubbles.

Soapy water
An important idea in soap films of all sorts is surface

tension. For our purposes, we can think of surface ten-
sion as a force that lies in a very thin plane right at the
surface of a liquid-air interface. It’s a contractive force,
trying to pull the surface into the smallest shape possi-
ble. Figure 1 shows a schematic view of how this works.
Molecules in the liquid pull on each other uniformly, so
that the forces upon them are basically neutralized. But
for molecules near the surface, all the pull is in the plane
of the surface or back into the liquid.

We can make bubbles with soapy water much more
easily than with regular water. Why? Soap decreases the
surface tension. Plain water has a surface tension of
about 72.25 dynes per square centimeter at 20 degrees
Celsius. When you add soap, this surface tension drops

by about 65 percent. It’s this diminished surface tension
that lets soap bubbles form and last. The higher tension
in plain water causes it to pull against itself too tightly to
form big, stable bubbles. That’s why raindrops and dew-
drops are little blobs of liquid (usually as small and
spherical as the circumstances allow) rather than little
bubbles or bits of froth.

Soap films have an interesting chemical structure. Soap
molecules are the metal salts of long-chain fatty acid mol-
ecules. When dissolved in water, the soap molecules
break apart and ionize. Let’s look at this more closely.

A common soap, sodium stearate, has the chemical
symbol C17H35COO−Na+. When added to water, this mol-
ecule breaks into two parts. The metal component splits
off by itself and floats around as a little positively
charged ion of sodium, written Na+. The rest of the mol-
ecule structurally looks like a ball and chain, or a blob
with a tail. The blob, or head, is the polar carboxyl group
COO−. The long tail consists of the hydrocarbon chain
C17H35. These two pieces of the same molecule respond
to water differently.

The head is called hydrophilic, which means water-
loving, because this part of the molecule likes to be sur-
rounded by water. But the tail is hydrophobic, or
water-hating. It will dissolve in fat, oil, and grease, but
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1 Surface tension at the boundary between water
(blue) and air (green). The water molecules (white)
attract each other. For molecules near the surface
(pink), no outward forces exist, pulling the molecules
sideways and back in to the liquid.

2 Soap molecules in water. (a) In solution, the heads
stay in water and the tails poke out. The small purple
circles represent sodium ions. (b) A thin film.



avoids water. This difference in preference results in
each molecule migrating to the film’s surface where the
tail pokes out of the water and the head is submerged
just inside, as in Figure 2a. Since it lives on the surface,
this type of molecule is called a surfactant. The entire
molecule is called amphipathic, or “both loving.”

Soap molecules are pretty big—the tail is about 30Å
(10 Ångstroms = 1 nanometer), and the head takes up
about 40Å2 of surface area. This explains why the sur-
face tension of soapy water is less than that of water—
the monomolecular layer of big carboxyl heads at the
surface push away the much smaller water molecules,
reducing the force they can exert on one another. Since
the water molecules can’t attract each other as strong-
ly, the surface tension decreases.

In a soap film, two parallel sheets of soap molecules
sandwich a layer of water (Figure 2b). Soap films are
thin—usually between about 2 × 105 Å to 50 Å. In the
thinnest films, the amphipathic molecules are almost
head-to-head. We’ll see next time that this range of
thicknesses is what gives rise to the brilliant colors in
soap bubbles.

Up until a certain point, as more soap is added to the
solution, the density of the soap molecules at the sur-
face increases until it reaches about one molecule per
50 Å2. At this point the surface is pretty densely packed
with soap molecules, and as more soap is added, the
new molecules just float around inside the water. Things
change when the concentration of the soap passes a
point called the critical miscellization concentration, or
CMC. Then the soap molecules spontaneously form lit-
tle clusters called micelles, as shown in Figure 3. Micelles
typically consist of 50 or more ions. The big heads on
the outside of the cluster keep the water molecules out,
effectively creating a little water-free bubble inside the
solution.

Soap film geometry
There’s an easy experiment you can do yourself that

demonstrates some important properties of soap films.
I’ll describe the standard apparatus, and then we’ll look
at what we can discover using it.

Take two clear plastic rectangles, about 6 inches on
a side, and place some metal or plastic pins between
them. The pins should be round and smooth and rather
small in diameter, and they should hold the sheets so

that they’re as parallel as possible and about an inch
apart. Figure 4 shows the idea. Here I’ve placed three
pins at random. If we dip the apparatus into soapy
water and then pull it out, we observe a soap film run-
ning between the sheets and joining up the pins, as in
Figure 5. Every acute triangle formed by the pins will
result in a film that looks like three sheets meeting
together inside the triangle.

Let’s look at two interesting properties shared by all
soap films of this sort.

First, these films always form in flat segments.
Consider a piece of film that connects two of the pins.
The surface tension in the soap film is always trying to
pull it into the shape with the least amount of surface
area contained by its borders. When those borders are
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3 A micelle. Note that the heads keep the water mole-
cules out of the center.

4 (a) An
exploded view
of the soap-film
apparatus. 
(b) The assem-
bled apparatus.

(a)

(b)

5 After it has
been dipped in
soapy water.



two parallel pins and two parallel sheets, that smallest
area forms a flat rectangle.

The second property is that segments can either meet
in pairs or in triples. Pairs occur only around the outside
of the pins, if at all. Whenever segments meet three at a
time, they always form three 120-degree angles, as in
Figure 5. This is pretty surprising. It says that in any
frothy soap film, all the edges meet at the same angle.
Since this property also helps determine the geometry
of how 3D soap bubbles join up, it’s worth taking a brief
detour to see why this happens. By the way, because the
distance between the plastic sheets doesn’t affect the
film’s shape (within reasonable limits), I’ll adopt the
common convention of discussing the geometry as
though it were 2D. To get the 3D versions, just extrude
the diagrams perpendicular to the page.

Before we get started, I’ll point out a couple of useful
properties of ellipses. An ellipse is a closed curve defined
by two points (each a focus, or together the foci) and a
constant. Let’s call the two focal points A and B, and the
constant k. Then the ellipse is that set of points P that lie

at an equal summed distance from the foci; that is, AP +
BP = k. In Figure 6, I’ve also marked a random point on
the ellipse as P, and at that point indicated the normal
(with inside and outside points NI and NO), and the tan-
gent line (with endpoints TA and TB).

For any point P on the ellipse, we can prove two well-
known properties:

E1: AP + BP = k
E2a: ∠APTA = ∠BPTB

E2b: ∠APNI = ∠BPNI

E2c: ∠APNO = ∠BPNO

In words, E1 says that the sum of the distances from P to
the foci is a constant. E2a says that the lines from the
foci to P form equal angles with the tangent. E2b and
E2c follow from E2a.

Let’s take a look at why soap films always meet at 120
degrees. We’ll do it by assuming that we know the point
P and observing its properties. The trick is to realize that
using P, we can build a circle and an ellipse that must be
mutually tangent.

Let’s begin with the triangle ∆ABC in Figure 7a. If
we’re also given a point P, then we know lengths AP, BP,
and CP. (Formally, AP is the name of the segment, and
|AP| is its length, but I won’t bother with the vertical
bars here.) Let’s draw a circle of radius AP around A, as
in Figure 7b. Now use property E1 to draw an ellipse
around foci B and C with k = BP + CP as in Figure 7c. P is
that point on the circle closest to the foci B and C.

Geometrically, we can see that this circle and this
ellipse must graze each other at point P, where they also
share a tangent, as in Figure 8a. To show that this is true,
suppose the opposite. Either the ellipse and circle miss
each other completely as in Figure 8b, or they intersect
twice as in Figure 8c. Look at point Q in Figure 8b. It can’t
possibly be P, because QA + QB + QC < PA + PB + PC.
That is, the total path is smaller for point Q, but we
assumed that point P was closest to the foci. This con-
tradiction rules out any point on an ellipse that’s too
small to intersect the circle. Since we’re aiming for a min-
imum length, this also rules out any ellipses so big that
they contain the circle. Now consider point Q in Figure
8c. It also cannot be P, because we could reduce the
length QA while keeping QB + QC constant (that is, we
could move along the ellipse to point Q′, giving us QA +
QB + QC > Q′A + Q′B + Q′C). This contradiction rules
out any point on an ellipse that intersects the circle.
Since Figures 8b and 8c are ruled out, we’re left only
with Figure 8a.

Since P lies on the ellipse, we know from property E2c
that ∠APB = ∠APC, as shown in Figure 9a.

Now erase the circle and the ellipse. Repeat the
process. This time draw the circle around point B with
radius BP and the ellipse that just grazes it on foci A and
C, as in Figure 9b. Property E2c tells us that ∠APB =
∠CPB. Since ∠APB is equal to both of the others, we’ve
found that

∠APB = ∠CPB = ∠APC

Since all three angles are equal, and they obviously sum
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6 An ellipse with focal points A and
B, constant k, set of points P, the
normal, and the tangent line.
Ellipse property E2a is in green,
property E2b in red, and property
E2c in blue.

7 (a) Triangle ABC and point P. (b) A circle around A of radius AP. (c)
Adding an ellipse around BC with constant BP + CP.

8 (a) The ellipse and circle meet at P with a common tangent. (b) The
ellipse is too small and doesn’t contact the circle. (c) The ellipse is too big
and intersects the circle twice.



up to 360 degrees, each one is 120 degrees.
This is also called the three-point Steiner problem.

The Steiner problem asks us to find the shortest network
of straight lines that join up a collection of points.
Whenever we’re dealing with points in the plane, poly-
gons are always interesting special cases (see Figure 10).
We’ve just seen how to solve the problem for any trian-
gle (we’ll look at squares and rectangles in a moment).
Notice that the regular pentagon’s path is symmetrical,
and of course all triples join at a 120-degree angle. For
regular polygons with six or more sides, the shortest-
path solution is simply the perimeter of the polygon with
one side omitted. This kind of perimeter joining is the
exceptional case when the films join in pairs rather than
triplets and don’t meet at 120-degree angles.

Now that we know the solution for a triangle, let’s
look at it a slightly different way. These other visualiza-
tions will be useful when we look at networks for the
square and rectangle.

Figure 11 shows the basic idea. We have two vari-
ables, x and y, which we’ll use to locate a point P. We’ll
use variable y to select a point Q along the line from B
to C—the range [0, 1] maps Q to [B, C]. We’ll then use
variable x to locate a point P along the line from A to
Q—the range [0, 1] maps to [A, Q]. These two variables
are called the configuration parameters for this 
problem.

For each pair (x, y) we find P and then the total length
of the soap film AP + BP + CP. Figure 12 shows this length
for some points P swept out by this technique. I nor-
malized the values, so a black dot represents the longest
path and a white dot the shortest. It shouldn’t be too sur-
prising that the minimum looks to be about where the
angles would all be 120 degrees.

Figure 13 shows a 2D plot of the function, both as a
surface and as contours. Notice that because of how I’ve
set up the parameterization, all points with x = 0 lie at
point A, so the value of y doesn’t matter at x = 0. If we

IEEE Computer Graphics and Applications 79

9 (a) ∠APB = ∠APC. (b) ∠APB = ∠CPB.
10 Shortest-path (or Steiner) networks. (a) Triangle. (b) The square has
two configurations. (c) Pentagon. (d) For hexagons and above, the perime-
ter minus one edge.

11
Configuration
parameters for
the triangle.
Variable y
chooses a point
Q from B to C,
then x chooses
P from A to Q.

12 Total path
length for
different points
in the triangle.
The lengths are
normalized, so
black is longest
and white
shortest.

13 Total path
length for the
triangle. 
(a) Plotted as
height. (b) The
contours.



were seriously investigating this space, we’d want to use
a more uniform parameterization of the triangle.

Films on the square
Now that we’ve found the Steiner network for a tri-

angle, let’s look at a square. We can cook up lots of pos-
sibilities for straight-line networks that join the vertices
of a unit square. Figure 14 shows a graph of some exam-
ples and the length of the network they generate. (I
included the square’s circumscribing circle as well, just
for fun.)

The shortest path has a length of 1 + √3. To confirm
this, Figure 15 shows the geometry for this network,
based on the 120-degree angles we know soap films
always form. The shaded triangle in Figure 15a is a 30-
60-90 triangle. The long leg has length 1/2, meaning
that the hypotenuse has length 1√3 and the vertical leg
is 1/2√3. The total length is then the four hypotenuses
plus the vertical leg: 4 (1/√3) + [1 − 2(1/(2√3))] =
1 + √3 ≈ 2.73.

Let’s look at how the length changes for different
points in the square. Figure 16 shows how we’ll set
things up. The two configuration parameters x and y will
sweep out the lower left corner of the square to identi-
fy point P. We’ll join P to B, extend it vertically, and then
reflect the result, letting symmetry simplify the prob-
lem. Figure 17 shows the surface and contour plots, and
happily the minimum length appears where we just
determined it should be.

Aspect ratios for films
Hang on a second. Figure 14 shows two configura-

tions (on the far right) for the square that both meet our
criterion for a shortest path. One is obviously nothing
but a rotation of the other. Suppose we build a plastic
and pin gadget using four pins that form the vertices of
a square. If we dip this into a bucket of soapy water,
when we pull it out the soap film will have only one con-
figuration or the other. Which will it be?
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14 Path lengths for different networks on a square.

15 Finding the total path length 1 + √3 for the best
shaded triangle.

16 The configuration parameters place P in the lower
left quadrant. The rest of the network is drawn as
shown.

17 Total path length for the square. (a) Plotted as height. 
(b) The contours.

18 The rectangle device. The two pins in the bottom
left are fixed at a distance of 1 unit from each other.
The other two pins are attached to a handle, which
holds them 1 unit from each other, and parallel to the
first two. By moving the handle in and out, the four
pins can form a variety of rectangles.



The easy answer is that it doesn’t
matter. As far as the plastic gadget is
concerned, it can’t tell whether it’s
been rotated 90 degrees. But this
easy answer opens up a much more
interesting question. Suppose that
after we dip it in water, we place the
gadget down on the table so that
from our point of view, the middle
bridge segment runs horizontally
(that is, the film looks like a bent let-
ter H). We know that the other con-
figuration (a bent letter I) has
exactly the same length. It turns out
that our minimum-length criterion
is equivalent to a minimum-energy criterion, meaning
that the soap film contains the least amount of energy
when it’s of minimum length. Most physical systems try
to adjust themselves to a configuration with minimum
energy, and soap films are no exception. In these terms,
it might be reasonable to expect the soap film to some-
how constantly flip back and forth between these two
low-energy states, since neither one is preferred. Of
course, that doesn’t happen, but why not?

Let’s answer this with a new experiment using a new
apparatus. Figure 18 shows the new gadget. Two pins
are fixed in position, 1 unit apart. Another pair of pins,
also 1 unit apart, are parallel to the first pair and con-
nected to a handle. By moving the handle in and out we
can adjust w, the length of one side of a rectangle

formed by the four pins. Figure 19 shows the appara-
tus in four configurations and the soap films that result.

To begin discovering why the film doesn’t sponta-
neously and frequently flip between the two middle
configurations in Figure 19, let’s first look at the con-
figuration space for this film. We’ll locate a point P in
the rectangle, lying along either the vertical or hori-
zontal centerline. For the configuration parameter I’ll
pick an angle β, which directs the bit of film coming out
of the lower left corner. It hits the vertical centerline at
point Pv, and the horizontal centerline at point Ph, as
shown in Figure 20. Remember that the rectangle is 1
unit high by w units wide. To determine which of these
points is closer (and therefore taken by the film), we
compute a critical angle βc that passes through the cen-
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19 The soap
films resulting
from moving
the handle. 
(a) A wide
rectangle. 
(b) A square. 
(c) A square. 
(d) A narrow
rectangle.

(a) (b)

(c) (d)

20 Geometry
for points P. 
(a) Pv = (w/2, 
(w tanβ)/2). 
(b) Ph =
(1/(2tanβ),1/2).



ter of the rectangle, as shown in Figure 21. When β < βc,
we use Pv for the meeting point of the films, and other-
wise use Ph.

Since we know that the soap films want to meet at 120
degrees, we can find the value of β that corresponds to
that configuration for any value of w. Figure 22 shows
the geometry for a long, short rectangle and for a nar-
row, tall one. The important angles are β = 30 and 60
degrees, respectively.

Now we’re ready to look at the soap film’s behavior
by plotting the length of the total film against the con-
figuration parameter. Let’s start with a narrow, tall rec-
tangle by setting w = 0.2, as shown in Figure 23a. The
plot of total length (or energy) versus the configuration
parameter β appears at the left in Figure 23b (all the
length curves in this section have been normalized to a
range of [0, 1] before plotting), where I’ve highlighted
the values at β = 30 and 60 degrees. Notice that β = 30
is a global minimum for this graph.

Imagine when we start pulling the apparatus from
the soapy water, the film initially forms in some random
state. That corresponds to some straight-line network
for a random value of β.

Since the film wants to minimize its energy, it will
move downhill on this graph as far as it can, looking for
the network with the shortest path, and therefore the
least energy. In this particular graph, no matter where
you start, downhill motion always takes you to β = 30,
so you’ll always get the vertical configuration when you
dip a rectangle with sides 1 and 0.2.

The rest of Figure 23 shows energy plots for six more
values of w. Figure 23d plots w = 1. Notice that the ener-

gy profile has two distinct local minima. If the soap film
randomly starts off with β > 45 degrees, then it will roll
to the minimum on the right, otherwise it will go to the
one on the left. Once in one of these minima, the film
can’t get to the other one without passing through a zone
of higher energy (or longer length). That’s why the film
doesn’t flip back and forth—it would have to take in
energy to get over the hill to the other side. You can sup-
ply this energy yourself by blowing on the film careful-
ly, thereby using the energy from your breath to nudge
the film over the high-energy wall into the other valley.

Figure 23c shows a less extreme situation, which rep-
resents a value of w halfway between 1√3 and 1. You
can see that there’s still a local minimum for the hori-
zontal configuration, but it’s not quite as wide. In ran-
dom dippings, you’re more likely to start in the
left-hand valley and roll down to the vertical energy
state. But this is still a minimum, and it’s still stable—
if the film takes on this configuration, it stays there.

Figure 23b shows what happens at w = 1√3. This is the
value where we see a cusp for the horizontal configura-
tion. This is exactly where this configuration ceases to be
stable. If the rectangle is slightly wider than 1√3, then the
horizontal configuration can form and persist. If the rec-
tangle is slightly narrower, then the horizontal configu-
ration can no longer form in a stable way, and we always
get the vertical form. In terms of the energy graph, no
matter where you start, downhill always takes you to the
vertical configuration; we’ve lost the little uphill barrier
that formed a valley for the horizontal form.

The rest of Figure 23 shows what happens as w
increases beyond 1. The cusp for the vertical configura-
tion occurs at w = √3; any wider than that and the soap
always comes up horizontally.

We’ve seen that when w < 1/√3 we always get the
vertical form. When w > √3 we always get the horizon-
tal one. What happens in between?

The colored lines on the right side of Figure 23 show
the answer. Let’s follow the gold path, starting at the top
above a narrow rectangle. The shaded rectangle to its
right just doesn’t form—the angles aren’t 120 degrees.
If the film starts off in this position, it will immediately
adjust itself to the stable configuration. This shaded rec-

tangle corresponds to the blue dot
in the energy graph, which isn’t in a
stable position.

If we increase w and pull the rec-
tangle wider, following the gold path
downwards in Figure 23, then the
network adjusts, but stays in a verti-
cal configuration. We can make the
rectangle narrower or wider as we
please, and the network stays verti-
cal. But if we pull out the handle far
enough to reach the critical value of
w = √3, the vertical form is no longer
stable. The film instantly snaps into
the horizontal configuration, as
shown by the right-pointing gold
arrow. Now we’re on the blue path.
Increasing or decreasing the width
keeps us on the blue path. In other
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22 The ideal angle.  All three lines meet in the colored rectangle at 120
degrees. (a) For narrow rectangles, β = 30 degrees. (b) For wide rectangles,
β = 60 degrees.

21 Finding the
critical angle: βc

= arctan(1/w).
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23 The soap film network for seven different values of the width w, for a rectangle with constant height 1. Each
row shows the energy profile, the vertical configuration, and the horizontal configuration (the grayed out forms
aren’t stable). The gold and blue dots are at configuration parameter angles of 30 and 60 degrees. The paths on
the right show how the network behaves as the width of the rectangle is adjusted. (a) w = 0.2, (b) w = 1√3, (c) w =
(1 + (1√3))/2, (d) w = 1, (e) w = (1 + √3)/2, (f) w = √3, and (g) w = 3.



words, there’s no going right back—we can’t recover the
vertical form just by making the rectangle a little nar-
rower. We say that this process is not reversible.

The horizontal form is stable from as wide as you
want to as narrow as w = 1/√3, when it snaps into the
vertical configuration, as shown by the left-pointing blue
arrow.

Any rectangles narrower than w = 1/√3 are always in
the vertical form, and any wider than w = √3 are in the
horizontal form. Basically, any time you adjust the soap
film, you stay in the valley you’re already in until that
valley ceases to exist. This phenomenon, called hystere-
sis, shows up in other situations, such as when you mag-
netize a piece of iron.

Figure 24 puts all this information together and shows
the variation in the energy of the film with respect to the
width w and the configuration parameter β. Figure 25
shows a close-up of the hysteresis region 1/√3 < w < √3.

Blowing bubbles
Now that we know all about soap films, we’re ready to

stretch our minds and our films into 3D. In the next issue
we’ll look at the geometry of bubbles and bubble clus-
ters, discuss the source of the brilliant colors in the bub-
bles, and talk about making pictures like Figure 26. �

Readers may contact Glassner by e-mail at
andrew_glassner@yahoo.com.

Andrew Glassner’s Notebook

84 September/October 2000

Further Reading
The quintessential reading for soap bubbles is the book Soap

Bubbles: Their Colors and Forces Which Mold Them by C.V. Boys
(Dover Publications, New York, 1959), which was originally
published in 1911. The book is a friendly and light introduction to
the subject, aimed at the enthusiastic turn-of-the-century teenager
with a scientific curiosity.

Two more recent books provide a more modern and complete
introduction and served as my primary references. Demonstrating
Science with Soap Films by David Lovett (Institute of Physics
Publishing, Bristol, 1994) presents the idea of plotting the energy
curves for a rectangle of changing shape, which I adapted for the
discussion here. Another modern reference, The Science of Soap
Films and Soap Bubbles by Cyril Isenberg (Dover Publications, New
York, 1978), was my source for the chemistry of soap molecules.

24 The energy profile for the
rectangular gadget. The w axis runs
from 0 to 3, and the β axis from 0 to
90. (a) The energy profile. Note
that longer films naturally have a
longer path and higher energy,
making it difficult to see detail in
the surface. (b) The same data, but
each curve of constant w has been
independently normalized to the
range [0, 1]. (c) A contour plot of
Figure 24b.

25 A close-up of Figure 23b in the hysteresis region 1/√3 < w < √3. (a)
Height and (b) contour.

26 A cluster of three soap bubbles hovering in front of
a cloth background. 


