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In this article, we derive a physically-based model for simulating rainbows.
Previous techniques for simulating rainbows have used either geometric op-
tics (ray tracing) or Lorenz-Mie theory. Lorenz-Mie theory is by far the most
accurate technique as it takes into account optical effects such as dispersion,
polarization, interference, and diffraction. These effects are critical for sim-
ulating rainbows accurately. However, as Lorenz-Mie theory is restricted to
scattering by spherical particles, it cannot be applied to real raindrops which
are nonspherical, especially for larger raindrops. We present the first com-
prehensive technique for simulating the interaction of a wavefront of light
with a physically-based water drop shape. Our technique is based on ray
tracing extended to account for dispersion, polarization, interference, and
diffraction. Our model matches Lorenz-Mie theory for spherical particles,
but it also enables the accurate simulation of nonspherical particles. It can
simulate many different rainbow phenomena including double rainbows and
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supernumerary bows. We show how the nonspherical raindrops influence
the shape of the rainbows, and we provide a simulation of the rare twinned
rainbow, which is believed to be caused by nonspherical water drops.
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1. INTRODUCTION

Rainbows are among the most visually stunning phenomena in na-
ture. They are caused by the interaction of sunlight with small water
drops in the atmosphere, and they appear in the form of multicolored
arcs. The appearance of rainbows can vary significantly depending
on the lighting conditions and the raindrop distribution. Figure 2
shows examples of a full double rainbow, a close-up showing the
darkening of Alexander’s band, supernumerary bows, and a rare
twinned rainbow.

Even though the study of rainbows can be traced back more
than two thousand years [Lee and Fraser 2001], they are still not
fully understood. For instance, twinned rainbows (which strangely
are visible on the primary bow but not the secondary, as seen in
Figures 2(f) and 17), are believed to appear due to water drops not
being perfect spheres, but there is no solid theory to confirm this.

The first studies of rainbows assumed simple geometric optics
where light is refracted as it enters or leaves the water drop. This
model can explain the basic primary and double rainbow configura-
tion, but it fails at explaining supernumerary bows that are caused by
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Fig. 1. Our rendering results for different types of rainbows: (a) Rainbow derived from Lorenz-Mie theory. (b) Single primary rainbow with considering the
angular view of the sun. (c) Double rainbow with a flipped secondary rainbow. (d) Multiple supernumerary rainbows caused by small water drops with uniform
sizes. (e) Twinned rainbow resulted from mixture of nonspherical water drops and spherical ones.

interference. To account for interference it is necessary to consider
the sunlight as a wavefront interacting with the raindrop. This can be
accomplished using Lorenz-Mie theory, which accounts for reflec-
tion, refraction, dispersion, polarization, interference, and diffrac-
tion, and it turns out that all of these optical effects are necessary to
accurately simulate rainbows. Unfortunately, Lorenz-Mie theory is
limited to spherical water drops, and this not only yields wrong pre-
dictions in some cases, but it ultimately limits the types of rainbows
that can be explained as well. It is well-known that water drops be-
come nonspherical as they get larger, and this heavily influences the
distribution of the scattered light. Unfortunately, there is no theory
available that can explain the consequence of physical water drops,
and this is one of the reasons why rainbows continue to be an active
research area.

In this article we develop the first comprehensive model for rain-
bows in computer graphics. We explain the optical events that cause
rainbows, and we develop an accurate ray tracing algorithm that
accounts for the full spectrum of optical effects including disper-
sion, polarization, interference, and an efficient approximation for
diffraction. We show how our model matches the results of Lorenz-
Mie theory for spherical water drops, and how it extends to also
account for nonspherical water drops. The result is the first ac-
curate simulation of sunlight scattered by water drops of realistic
nonspherical shape. We show how even a slight variation in the
raindrop shape gives rise to changes in the position and shape of
the rainbow. Our simulation can be used to explain the strange ap-
pearance of twinned rainbows, as well as the more common double
rainbows and supernumerary arcs (see Figure 1). We also provide a
database of tabulated phase functions to the academic community1.

Our work falls in the domain of precise light simulation be-
yond the traditional limitations of pure geometric optics. Similar
approaches have been undertaken before in graphics, for instance in
the field of gem modeling [Guy and Soler 2004] or, the simulation of
interference in thin layers [Gondek et al. 1994]. While we focused
here on rainbows, we believe the model we develop can be used
for other phenomena involving scattering by small particles (for
example, halos). Furthermore, accurate predictive rendering mod-
els of atmospheric phenomena, like the one we present, can have
wider-reaching impact in areas such as meteorology, for example,

1http://graphics.ucsd.edu/∼iman/Rainbows/.

by providing a key component in deducing the size of water drops
from photographs [Narasimhan and Nayar 2003].

2. PREVIOUS WORK

Rainbows have traditionally been considered a fascinating topic,
from scientists to philosophers, and are arguably one of the most
beautiful displays of nature [Greenler 1990; Minnaert 1993; Lynch
and Livingston 2001]. Different theories have been developed over
the centuries, and some of them have been adopted by the computer
graphics community to simulate rainbows with varying degrees of
realism. Some techniques are based on a simplification of the pro-
cess, in order to achieve interactive frame rates, while others present
rainbow simulations in the context of atmospheric modeling. How-
ever, the complete (and quite complex) physics of rainbow forma-
tion has not been fully researched in the field of computer graphics.

Simplified solutions include the work by Musgrave [1989], which
follows Descartes’ model from a classical geometric optics perspec-
tive. Frisvad and colleagues [2007a] presented a real-time simula-
tion using Aristotle’s rainbow formation theory based on reflections
in clouds. Although these models may provide intuitive explanations
about rainbow formation, geometric optics by itself fails to capture
more complex aspects such as supernumerary arcs (see Figure 2(e)).

Lorenz-Mie theory [Lorenz 1890; Mie 1908] provides an exact
solution for scattering by spherical particles in nonabsorbing
media. Given its computational complexity, it was not deemed
useful until van de Hulst published results as tabulated data [1957].
Unfortunately, this work is limited to very small spheres, and
thus not directly suitable for rainbows. This theory was later
introduced to the graphics community by Rushmeier [1995], and
was used recently to compute scattering properties of different
materials [Frisvad et al. 2007b].

Lee [1998] investigated the differences between results obtained
using Lorenz-Mie theory and Airy theory [Airy 1838], including
perceptual issues. Jackèl and Walter [1997] simulate rainbows by
adding a rain layer to the atmosphere and making use again of
Lorenz-Mie theory to compute phase functions for single scatter-
ing. In their work, raindrop sizes follow a normal distribution. A
similar approach with a log-normal distribution was introduced
by Riley et al. [2004], who achieve interactive frame rates with
simplified lighting models. Phase functions are obtained based on
the work by Laven [2003], which implements the algorithm from
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Fig. 2. Different rainbows seen in nature: (a) primary rainbow, (b) double rainbow (both reproduced with permission c©Dan Bush - http://www.missouriskies.
org/rainbow/february rainbow 2006.html), (c) double rainbow, (d) Alexander’s dark band, (e) multiple supernumerary bows (reproduced with per-
mission c©Ian Goddard - http://www.atoptics.co.uk/rainbows/bowim46.htm), (f) twinned rainbow (reproduced with permission c©Benjamin Kuehne -
http://www.nachtwolke.de/temp/regenbogen2.htm), (g) cloud bow (reproduced with permission c©Les Cowley - http://www.atoptics.co.uk/rainbows/cldbow.
htm), and (h) red bow.

Bohren and Huffman [1983] to obtain scattered intensities. A sim-
plified, texture-based GPU implementation has also been devel-
oped [nVIDIA 2004]. Recently, Gedzelman [2008] explored the
influence of the atmospheric environment on the appearance of
rainbows; although valid conclusions on overall brightness and vis-
ibility were reached, the results did not aim to be photorealistic.

Most of these approaches are based on Lorenz-Mie theory which,
unfortunately, can only provide an accurate solution in the case
of spherical water drops. However, real water drops diverge from
perfect spheres due to the combined effects of gravity and surface
tension [Beard and Chuang 1987; Beard et al. 1991; Bringi et al.
1991; Villermaux and Bossa 2009]. This translates into inaccurate
simulations in the best case, and the impossibility to simulate certain
effects like the twinned rainbow in the worst case. In this article, we
introduce a novel algorithm based on a ray tracing approach, which
for the first time matches the predictions of Lorenz-Mie theory for
the ideal case of spherical water drops, but naturally generalizes
to handle actual, real-world water drop geometries. This allows us
to produce excellent simulations of rainbows, while extending the
validity of such simulations to include scattering from nonspherical
drops of water.

The most practical solution for computing the scattering prop-
erties of particles with arbitrary shapes, are the Finite Difference
Time Domain (FDTD) methods [Yee 1966; Taflove 1998]. These
methods can simulate Maxwell’s time-dependent equations on a
discrete lattice in order to compute the behavior of the electromag-
netic wave. These brute-force methods have been used to simulate
the light scattering behavior of complex objects [Umashankar
and Taflove 1982] as well as ice crystals [Yang and Liou 1995,
1996]. However, they are computationally very expensive for
three-dimensional grids and can take days on multicore proces-
sors. Furthermore, the generalizations of Lorenz-Mie theory to
nonspherical particles by Frisvad et al. [2007b] cannot be used as

it only applies to the computed scattering cross-section, while the
appearance of rainbows are caused by variations in the angular
scattering profile (the phase function).

There has been other work focusing on the light scattering by
nonspherical particles [Mishchenko et al. 2000; Xu et al. 2010] but
none of them focuses on the physically-based geometries of water
drop particles and their effect on the appearance of rainbows. To
the best of our knowledge, we are the first to simulate the light
scattering by physically-based water drop shapes.

3. BACKGROUND THEORY

Rainbows are created from the interaction between light and a par-
ticipating medium composed of water drops suspended in the air.
The most important visual effects are due to single scattering (note
that we consider multiple light bounces within a single water drop
as single scattering). The complex phase function resulting from
this interaction produces the rich and varied angular distribution of
radiance we observe as rainbows. Multiple scattering is responsi-
ble for the grayish background that appears behind the rainbows
themselves. The effect of absorption on rainbow formation is neg-
ligible since the absorption of light in water reaches a maximum of
3.5 × 10−8 (expressed as the imaginary part of its refractive index
[Pope and Fry 1997]). In the following we describe the formation of
rainbows, from geometric optics to wave effects, and introduce the
actual shape of water drops, all of which will become the physical
basis for our simulation algorithm described in Section 4.

3.1 Geometric Optics

The basic formation of the primary and secondary rainbow can
be understood using simple geometric optics, considering ray
paths within the circular cross-section of a spherical drop of water.
For spherical drops, due to symmetry, the phase function is a
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(a) (b) (c) (d)

Fig. 3. Generation of rainbows from the point of view of geometric optics and wave optics: (a) primary rainbow angle, after a single internal reflection;
(b) secondary rainbow angle, after two internal reflections; (c) supernumerary rainbows are generated from constructive and destructive interference patterns
(inspired by Lee and Fraser [2001]); (d) diffraction extends the wavefront and avoids abrupt intensity changes.

1D function of the scattering angle θ between the incident and
outgoing directions. Light rays that undergo one internal reflection
in the water drop produce the primary rainbow for red light (700 nm
wavelength) for an index of refraction of η = 1.3314 at a scattering
angle of θrainbow = 137.7◦ and for violet light (400 nm wavelength)
for η = 1.3445 at θrainbow = 139.6◦ (see Figure 3(a)). Rainbows can
also be generated by light rays that undergo two or more internal
reflections: in the case of two internal reflections, the resulting
secondary rainbow varies between 129.5◦ for red light and 126.1◦

for violet light (see Figure 3(b)). Note the order of the colors of
the secondary rainbow (red on the inside of the arc and violet on
the outside) is reversed compared to the primary rainbow, as seen
in Figure 2(c). The darker area between both rainbows is known as
Alexander’s dark band (better perceived in Figure 2(d)).

3.2 Wave Optics

Interference. Although geometric optics can provide a good,
basic explanation of the formation of the primary and secondary
rainbows, real rainbows exhibit some features that cannot be
explained with this model. For example, additional arcs (known
as supernumerary arcs) occasionally appear on the inside of the
primary rainbow (and the outside of the secondary): such arcs are
typically violet or blue (Figure 2(e)). Supernumerary arcs caused
great consternation [Lee and Fraser 2001], because they were not
predicted by geometric optics. However, in the 1830s, scientists
such as Young and Airy realized that they were a consequence of the
wave theory of light: two rays that have different path lengths, must
also have different phases, which, results in an interference pattern
consisting of a series of maxima and minima as a function of the
scattering angle (see Figure 3(c)). This phase difference between
the two rays is also influenced by phase changes due to reflection.

Focal lines. As a wavefront interacts with the water drop, it
gets deformed. The surface that represents this wavefront can be
differentially defined by the curvature at each point. This curvature
defines a radius with respect to a corresponding focus or focal point.
Focal points are actually internal caustics within the water drop. As
light passes through a water drop, the collection of all focal points lie
along a focal line (see Figure 4). Each passage through a focal line
along the path results in a phase advance of π/2 [van de Hulst 1957].
This traversal of focal lines needs to be considered for an accurate
estimation of the phase difference between two interfering rays.

Diffraction. Another failure of geometric optics is that it
predicts infinite intensity at θrainbow and no scattering light when
θ < θrainbow, while diffraction predicts that this abrupt radiance
gradient cannot happen in reality [van de Hulst 1957] (see

Fig. 4. A focal line defines the curve along which all the differential focal
points of the wavefront lie. The thick black represents a portion of the surface
of the water drop. The green patches represent the wavefront itself. Notice
how they converge to the red line, which is the focal line.

Figure 3(d)). Airy [1838] produced an elegant mathematical
solution which avoided both of these problems and proved that the
peak intensity of the rainbow does not occur at θrainbow = 137.86◦,
but at a slightly higher value of approximately θ = 138.9◦.

Another consequence of diffraction is that scattering from small
droplets of water (such as fog in which the droplet radius is typically
between 5 μm and 20 μm) can generate rainbows that are essentially
white. As the diffraction pattern for small droplets has very broad
maxima in terms of θ , the rainbows corresponding to different
wavelengths in the visible spectrum tend to overlap each other,
thus creating white fog bows or cloud bows. Therefore, diffraction
becomes more relevant as the water drops get smaller.

3.3 Lorenz-Mie Theory

Lorenz-Mie theory [Lorenz 1890; Mie 1908] developed a rigorous
solution to the problem of scattering of light from spheres, taking
into account not only interference, but polarization and radius dis-
tribution as well. Figure 5 shows the result of Lorenz-Mie theory
calculations to simulate the scattering of sunlight by a water drop
with radius 100 μm. It shows the primary rainbow near θ ≈ 139◦,
the secondary rainbow near θ ≈ 127◦, and Alexander’s dark band
between θ ≈ 130◦ and θ ≈ 136◦. Note that the primary and sec-
ondary rainbows are strongly polarized: the dominant polarization
is given by the perpendicular component of the electric field (with
respect to the scattering plane). The colored horizontal bars above
the graph in Figure 5 show the colors and relative brightness of
the rainbows: the top bar represents perpendicular polarization, the
middle bar represents parallel polarization, while the lower bar rep-
resents unpolarized light (the combination of the two).

Figure 6 illustrates how the appearance of the primary and sec-
ondary rainbows varies with the radius of the (spherical) water
drop, according to Lorenz-Mie theory: this type of diagram was first
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Table I. Water Drop Polar Curve Coefficients for Eq. (1) [Beard and Chuang 1987]
a(mm) c0 c1 c2 c3 c4 c5 c6 c7

0.4 0 0 0 0 0 0 0 0
1.0 −0.0131 −0.0120 −0.0376 −0.0096 −0.0004 0.0015 0.0005 0
1.5 −0.0282 −0.0230 −0.0779 −0.0175 0.0021 0.0046 0.0011 −0.0006
2.0 −0.0458 −0.0335 −0.1211 −0.0227 0.0083 0.0089 0.0012 −0.0021
2.5 −0.0644 −0.0416 −0.1629 −0.0246 0.0176 0.0131 0.0002 −0.0044
3.0 −0.0840 −0.0480 −0.2034 −0.0237 0.0297 0.0166 −0.0021 −0.0072

The a = 0.4 row has been added to account for spherical water drops. Intermediate values are obtained through linear
interpolation.

Fig. 5. Graph of intensity as a function of scattering angle for the primary
rainbow caused by scattering of sunlight by a spherical drop of water of
radius 0.1 mm. The color stripes on top represent, from top to bottom,
the phase function for perpendicular polarization, parallel polarization, and
unpolarized light, respectively.

Fig. 6. Lee diagram showing the variation in appearance of primary and
secondary rainbows caused by scattering of sunlight by a spherical water
drop as a function of radius (Lorenz-Mie theory calculations).

shown by Lee [1998] and is consequently known as a Lee diagram.
It shows the complexity of rainbows and their supernumerary arcs.

3.4 Nonspherical Water Drops

We consider physically-based water drops that are the same size and
shape throughout the medium. Though water drops suspended in
air are never homogeneous (the distribution of shapes and sizes can
even be time-varying), given the ability to simulate phase functions
for arbitrary geometry, such distributions can be accounted for by
calculating and combining a set of phase functions according to the
distribution. For each water drop size, we use the model by Beard
and Chuang [1987] which accounts for surface tension as well as
hydrostatic and aerodynamic pressure. Beard and Chuang proposed
a cosine series fit to the model, with the shape of the raindrop profile

Fig. 7. Physically-based raindrop shape with increasing radii as proposed
by Beard and Chuang [1987].

given by the polar curve

r = a

[
1 +

∑
cn cos(nθ )

]
, (1)

where a is the radius of the equivalent volume sphere, while the
coefficients cn are listed as tabulated values (see Table I). Figure 7
shows visualizations of several water drop shapes based on this
work. Other models and approaches (and even water drop distribu-
tions) can be trivially used in our simulations, as the algorithm can
handle arbitrary geometries.

4. SIMULATING RAINBOW PHASE FUNCTIONS

A key aspect for an accurate simulation of rainbows is the precise
computation of the phase function, which defines the angular dis-
tribution of radiance for every wavelength. Some of the approaches
discussed in the previous work propose efficient methods to render
rainbows, but they do not actually simulate precise phase func-
tions, which they take from available simulators such as AirySim2,
BowSim3, and MiePlot4. While these simulators do a great job at
approximating the phase function of rainbows under some con-
ditions, they all have hard limitations: none of them can handle
physically-based water drop shapes, limiting the computations to
spheres. BowSim can additionally handle ellipsoids, but it does not
consider interference for its simulations. AirySim, however, approx-
imates interference using Airy functions. In this section we focus
on this key aspect of rainbow simulation and our proposed solution
for arbitrary geometries. This is our primary contribution.

We compute phase functions for nonspherical water drops by tak-
ing a virtual gonioreflectometer approach. In essence, we simulate
the way a collection of light rays scatter off a water drop and gather
the resulting information on an infinite collecting sphere. The prob-
lem at hand is thus similar to rendering caustics, and therefore a
pure Monte Carlo approach would be impractical. Unfortunately,
photon mapping would not work either, since interference in this
configuration produces extremely high-frequency details which the
radiance estimation technique would fail to reproduce. To include
all the important optical properties of real rainbows we augment

2http://www.atoptics.co.uk/rainbows/airysim.htm.
3http://www.atoptics.co.uk/rainbows/bowsim.htm.
4http://www.philiplaven.com/mieplot.htm.
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Fig. 8. Steps of the algorithm. (1) Casting the grid of rays towards the particle. (2) Rays are reflected and refracted towards the water drop, forming patches.
(3) Outgoing patches are collected in an infinite collecting sphere. (4) The stored patches in the collecing sphere are queried at specific directions, sampling
the phase function.

our ray tracing computation to account for dispersion, polarization,
interference, and diffraction. Unlike Lorenz-Mie theory, which is
limited to spherical drops, our approach allows us to use the real
shape of the drops and thus produce more accurate simulations.

Our algorithm simulates the phase function by following several
steps for each wavelength.

(1) We cast a grid of rays from an emitting plane that represents the
wavefront of a directional light source. Each ray carries wave
information represented using phasors.

(2) These rays interact with the water drop (through reflection and
refraction) a number of times and exit the water drop forming
patches.

(3) The outgoing patches are deposited on an infinite collecting
sphere and stored in an acceleration structure.

(4) The phase function is discretized into tabulated form by query-
ing the acceleration structure along a 2D set of sampling direc-
tions uniformly distributed in longitude-latitude.

The stored tabulated phase function is later used for rendering. All
these steps are illustrated in Figure 8.

In the following, we first explain the basis of our approach from
a classic ray tracing perspective, for the sake of clarity; we then
introduce our phasor notation which allows us to efficiently compute
interference and polarization.

Casting Rays. Inspired by the beam tracing technique [Heck-
bert and Hanrahan 1984], and similar to the work by Collins [1994],
we follow a wavefront of light by casting a grid of rays (3000×3000
rays for our results). This way, rays that are contiguous and repre-
sent the same wavefront can be identified. Rays are perpendicular
to a reference emitting plane, representing a collimated light source
that emits a parallel wave train (see Figure 8(1)). Each of these rays
is propagated through interactions with the water drop, which can
be of arbitrary geometry. For our tests we use a physically-based
geometric model that accounts for different particle sizes [Beard
and Chuang 1987] although any other model or specific geometry
could be considered instead.

When a ray interacts with the water drop, its path is reflected and
refracted according to the law of reflection and Snell’s law, respec-
tively. We account for up to four consecutive interactions: a single
reflection, two refractions, two refractions with an internal reflection
(primary rainbow), and two refractions plus two internal reflections
(secondary rainbow). Though further bounces could easily be han-
dled, they have a negligible effect on the resulting phase function.

Collecting Sphere. When rays exit the water drop, we store
the outgoing rays and their corresponding adjacency information
as a set of patches on an infinite virtual collecting sphere (see

Figure 8(3)). Each vertex of a patch thus represents one outgoing
ray and contains wave data.

The energy of the emitting plane is split among all the grid cells
according to each grid cell’s area ai . When this energy exits the
particle and reaches the collecting sphere, it is transformed into
radiance by considering the solid angle si of the resulting patch.
Therefore, the ratio ai

si
determines a patch’s contribution to the

phase function, which amounts to density estimation. While we
could apply this relation directly to photometric units, this would
not account for many of the effects that contribute to rainbows such
as interference, polarization, focal lines, and diffraction. Instead, we
apply this ratio to the corresponding wave data, which is described
in the following section.

4.1 Computing Interference

To account for interference and polarization, we characterize light
in terms of an electromagnetic field E perpendicular to the direction
of the ray. Defining a coordinate system with the z-axis along the
direction of propagation, we can define it in terms of two orthogonal
phasors of the electromagnetic field [Giancoli 1989]. We have

Ex = Axe
i
(

2π
λ z−ωt+δx

)
and Ey = Aye

i
(

2π
λ z−ωt+δy

)
, (2)

where Ax and Ay are the amplitudes, λ is the wavelength, ω is the
angular frequency, t is time, and δx and δy represent phase offsets.
The irradiance carried by a planar electromagnetic wave represented
by two phasors is A2

x + A2
y .

We assume that all the waves have traveled the same optical path
from the sun (and therefore z is a constant reference path) and
also consider a stationary simulation of the phase function, where
ωt becomes constant. Furthermore, we sample fixed values of λ
along the visible spectrum and simulate each independently. As a
consequence, the only relevant information for each phasor is the
amplitude A and the corresponding phase offset δ, which is the
polar representation of the phasor.

Following Euler’s formula, eix = cos x+i sin x, we can represent
a phasor Aeiδ by a complex number (rectangular representation) for
which the real part is A cos δ and its complex part is A sin δ. This
rectangular representation is efficient for phasor addition (inter-
ference) and phasor interpolation. Furthermore, it enables a very
straightforward simulation of the interactions between the electro-
magnetic wave and the water drop, by applying the corresponding
Fresnel coefficients (as explained shortly in the text).

Each ray in our algorithm carries the following information:

—Two phasors Ex and Ey represented by complex numbers.

—The traversed optical path l.
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Fig. 9. Comparison between the different phenomena simulated by our method (dispersion, interference, and diffraction) and the same simulation from the
Lorenz-Mie theory, for a 0.4 mm radius spherical water drop. Left: Graphs for 650 nm wavelength. Right: Renderings for 33 wavelength.

Additionally, during ray tracing, we consider the frame that rep-
resents the coordinate system of the two axes of the electromagnetic
wave (perpendicular to the propagation direction). These axes are
rotated as needed for the different interactions.

Phase shifts need to be taken into account; these occur at the
interaction with the water drop, along the traversed optical path,
and at focal lines. As rays are traced, we modify the phasors at the
interactions with the water drop. Phase shifts due to optical path
and focal lines are included after the bilinear interpolation at each
patch (see Section 4.1.1).

There has been some previous work for ray tracing polarization
effects [Wolff and Kurlander 1990; Tannenbaum et al. 1994; Wilkie
et al. 2001], all based on coherency matrices. Our approach, on the
other hand is similar to using Jones vectors [Jones 1941] and can
account for interference.

Ray-Water Drop Interactions. Light interacting with a wa-
ter drop gets both reflected and refracted, with the total amplitude
divided between both rays in terms of the parallel and perpendic-
ular components with respect to the plane of incidence. We rotate
the coordinates of the two components of the wave to a parallel-
perpendicular coordinate system. As in previous work by Gondek
et al. [1994], the respective amplitudes are multiplied by the Fres-
nel coefficients t‖, t⊥, r‖ and r⊥, which can be found in most optics
books [Lipson et al. 1995] and can become complex in the case
of total internal reflection. We multiply phasors with these poten-
tially complex coefficients using the rectangular representation of
complex numbers explained before.

Optical Path. The optical path l is defined as l = ∫
P

η dp,
where η is the index of refraction and p refers to the differential
traversed path. In our case the total optical path traversed by a
ray is l = ηipi + ηtpt , where pi and pt are the total distances
traversed outside and inside the water drop, respectively. Given the
impossibility of computing infinite path lengths from the sun, we
rely on the fact that interference computations require just relative
optical paths between different rays; we thus consider the common
casting plane to be placed at a distance d from the center of the water
drop (which would represent a distance z from the sun in Eq. (2)).
In a similar fashion, we set a second reference plane perpendicular
to each outgoing ray, placed at a distance d ′ from the center of the
water drop (not from the origin of the ray). The optical path l is
accumulated as the ray traverses the water drop by simply adding
the Euclidean distances between interactions outside and inside the
particle. We account for this effect on phase change during the
bilinear interpolation step in Section 4.1.1.

Focal Lines. Focal lines must also be considered for an accurate
simulation of the phase carried by each ray, given that each passage
through a focal line along the path results in a phase advance of
π/2 [van de Hulst 1957]. Unfortunately, both computing focal lines
caused by arbitrary geometry and detecting which rays actually
traverse a focal line are very complex tasks. However, we can ap-
proximate the exact solution by leveraging the fact that we only need
to take into account the area close to the rainbow. Furthermore, for
interference, it is again only the phase difference that needs to be
taken into account. We thus analyze the sign of the derivative of the
outgoing angle θ with respect to the impact parameter b = u2 + v2

(where u and v are the parameters that define the projection plane
from which the rays are cast, as illustrated in Figure 8(1)). When
this derivative is positive, we consider one extra focal line than when
the derivative is negative. The derivative (and therefore the number
of focal lines) is easily computed at each of the patches from its
corners. We consider that any direction inside a patch represents
a ray that has crossed that number of focal lines. Figure 9 shows
that this approximation of the real phenomenon leads to accurate
interference simulation, needing minimal computational overhead,
as opposed to numerically detecting the focal lines and intersecting
them with all rays, which would be prohibitively expensive.

4.1.1 Interference. In order to save the phase function to the
hard drive (so it can be later used in a renderer), we tabulate it
per wavelength by generating a 2D set of directions uniformly dis-
tributed in longitude-latitude coordinates. Each of these samples
corresponds to a direction r. We compute the outgoing radiance for
a specific direction r within a patch using bilinear interpolation of
the data stored at the four vertices of the patch. This bilinear inter-
polation is equivalent to assuming that the wavefront at each of the
patches is planar, and the error we commit by making this assump-
tion becomes negligible as the resolution of patches increases.

We then combine the interpolated data at each of the patches that
contain a direction to account for interference between wavefronts.
For efficiency we consider the whole set of patches as a virtual
geometry and we create a Bounding Volume Hierarchy (BVH) over
them. Given an outgoing direction r, we find the set of patches ϒ(r)
that contain r by tracing a ray from the center of the collecting
sphere in that direction. We consider all intersected patches for
interpolation and interference.

In Figure 10, we show an example for two patches k1 (red) and k2
(yellow), which represent two different interfering wavefronts. The
ray at each of the four corners vk

i of each patch contains information
about the two corresponding phasors Exk and Eyk and the optical
path lk . At each of the patches k ∈ ϒ(r) we bilinearly interpolate
this information from the four corners (at the specific direction r).
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Table II. Standard Deviation of the Gaussian Filter Diffraction Approximation for
Various Water Drop Sizes

Radius (mm) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ (degrees) 0.70 0.45 0.30 0.25 0.22 0.20 0.18 0.17 0.16 0.15

V1
k2

V2
k1

V1
k1

V4
k1

V4
k2

V3
k2

V3
k1

V2
k2

Fig. 10. Direction r intersects patches k1 (red) and k2 (yellow) (two parts
of two different wavefronts). At each of both patches, bilinear interpolation
from all the corners vk

i result into an interpolated electromagnetic wave
per patch. Interference is then computed by combining (adding) all the
interpolated electromagnetic waves.

Furthermore, we calculate the number of traversed focal lines fk for
that patch, as explained earlier. As the irradiance carried by a planar
electromagnetic wave represented by two phasors is A2

x + A2
y we

account for the corresponding radiance (applying the ai

si
factor, as

stated in the previous section) by multiplying each of the amplitudes

by
√

ai

si
. We then obtain the new phasor information E′

xk and E′
yk

including the phase shift due to the traversed optical path and to the
number of traversed focal lines for each interpolated wave as

E′
xk = Exke

i
(

2π
λ lk+ π

2 fk

)
, E′

yk = Eyke
i
(

2π
λ lk+ π

2 fk

)
. (3)

We then compute the final outgoing radiance due to interference by
adding all the traversed phasors. We have

Ex(r) =
∑

k∈ϒ(r)

E′
xk, Ey(r) =

∑
k∈ϒ(r)

E′
yk, (4)

where Ex(r) and Ey(r) are the two components of the wave that exit
the water drop towards r.

4.1.2 Diffraction. A fundamental problem with using ray trac-
ing techniques to simulate rainbows lies in the fact that geometric
optics predicts infinite intensity at the rainbow angle with a very
abrupt transition to zero intensity, as shown by the blue curve in
Figure 9. In contrast, Lorenz-Mie theory predicts that maximum in-
tensity occurs slightly above the geometric rainbow angle (see green
curve at about 138.5◦ in Figure 9). Note also that this transition is
softened so the intensity at the geometric rainbow angle is less than
the maximum intensity, with some light being scattered into the
zone below the geometric rainbow angle where no geometric rays
can penetrate.

This process is very similar to diffraction by a knife edge in which
some light appears in the shadow zone. An accurate calculation of
the effect of diffraction on the rainbow light field would require the
application of the Huygens-Fresnel principle for each differential
point on each wavefront, which is time consuming and impractical.
Such techniques would also be able to predict the supernumerary
arcs, but this is not necessary as Figure 11 shows that the super-

numerary arcs predicted by our ray tracing technique are already
in very close agreement with Lorenz-Mie theory. Hence, we need
only to address the diffraction effect, which can be efficiently ap-
proximated by performing a postprocess on the computed phase
function, by first identifying very sharp transitions in intensity at a
given wavelength and then smoothing out the sharp peaks by apply-
ing a domain-specific kernel. The size of the chosen kernel depends
on the size of the water drop. For efficiency reasons, we choose a
simple Gaussian kernel, summarized in Table II for different radii.
The values have been obtained from Lorenz-Mie theory for spheri-
cal drops, which our results show offer a good approximation. For
the secondary rainbow we double the standard deviation of the ker-
nel, to account for the fact that light has been reflected twice inside
the water drop.

The addition of the diffraction filter produces some fairly subtle
changes in our simulations, as can be seen in the simulations shown
in Figure 9. In essence, the diffraction filter softens the transitions
near the rainbow angle thus giving a better match to the Lorenz-Mie
simulations. It is important to acknowledge that the parameters for
our diffraction filter have not been thoroughly validated. Further
work based on the application of the Huygens-Fresnel principle
could overcome such concerns, but the increased accuracy of such
techniques would be outweighed by an immense increase in com-
putational complexity. In these circumstances, the diffraction filter
seems to be a sensible approximation that adequately addresses a
fundamental limitation of geometric optics.

5. RESULTS

We have used our technique to simulate several phase functions, and
then used those phase functions to render images depicting various
types of rainbows. Unless stated otherwise, each of the results shown
on this section has been simulated by casting rays from a 3000 ×
3000 grid for each wavelength, uniformly sampling 33 different
wavelengths between 380 and 720nm. The resulting phase functions
were sampled at an angular resolution of 1800 × 14400 (which is
dense enough to account for the cusp of the rainbow and the high-
frequency details of interference) and stored on disk. Rainbows are
obtained by ray marching and computing single scattering along
the volume, importance-sampling the sun (which is modeled as a
disc subtending a solid angle of 0.5◦). On an Intel(R) Xeon(R) CPU
X5570 at 2.93GHz, using 8GB of RAM, our simulations took an
average of 350 minutes to compute for all 33 wavelengths.

To validate our algorithm, we simulated the phase function of
spherical water drops of different sizes, comparing our results with
the predictions of Lorenz-Mie theory. Figure 9 shows this com-
parison for a 0.4 mm spherical water drop on a log-scale: purple
represents dispersion, the pure geometric interpretation of the phase
function of the rainbow; blue adds interference, and therefore the os-
cillations of the supernumerary arcs appear; green adds diffraction,
eliminating the high-intensity peaks at the geometric rainbow angle;
and red represents the simulation from Lorenz-Mie theory. Notice
the similarity between the green line (our complete simulation)
and the red line (Lorenz-Mie simulation). The main differences are
observed in the Alexander band, due to our diffraction approxima-
tion. Figure 11 shows rainbow renderings from the simulated phase
functions, again exploring variations in size; for small sizes, where
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(a)
(b)

(a)

(b)

Fig. 11. Comparison between our method (a) and Lorenz-Mie theory (b) for different water drop sizes. Top: Renders. Bottom: Plots of the phase function
for the regions of the primary and secondary rainbows. From left to right: Water drops of radius 0.1mm, 0.2mm, 0.3mm, 0.4mm, and 0.5mm, respectively.
Our method matches Lorenz-Mie theory for small water drops, which are spherical, but predicts different behavior as the radius increases by accounting for
nonspherical drop shapes.

Fig. 12. The inserts in these images show how our model can reproduce the rainbows in the underlying photographs. Only the background color of the insert
has been matched to the specific photograph. Top row, from left to right: double rainbow (background reproduced with permission c©Les Cowley - http://www.
atoptics.co.uk/rainbows/adband.htm), full double rainbow (background reproduced with permission c©Karl Kaiser - http://home.eduhi.at/member/nature),
and supernumerary bows. Bottom row, from left to right: Multiple supernumerary bows (background reproduced with permission c©Ian Goddard -
http://www.atoptics.co.uk/rainbows/bowim46.htm), cloud bow (background reproduced with permission c©Les Cowley - http://www.atoptics.co.uk/rainbows/
cldbow.htm), and red bow.

drops can be considered spherical, our results match Lorenz-Mie’s
predictions. However, larger drop sizes (0.5mm in the figure) stop
being spherical and consequently our algorithm predicts a different
behavior.

Our method accurately reproduces several rainbow-related phe-
nomena seen in nature. For instance, our algorithm can trivially
reproduce the primary and secondary rainbows as seen in Figure 12
top-left and top-middle). Also, by simulating interference we are
able to simulate supernumerary bows (Figure 12 top-right and
bottom-left). By including also the effect of diffraction on the rain-
bow, we can simulate phenomena such as the cloud bow (Figure 12

bottom-middle) in which the colors of the rainbow disappear into a
whitish bow. Simulating the effect of Rayleigh scattering allows us
to mimic the effect of a sunset on a rainbow (Figure 12 bottom-right).

When superimposing simulations on images of natural rainbows,
as in Figure 12, it is necessary to estimate the focal length of the
camera lens. Fortunately, this information is often available in the
EXIF data embedded in digital images. The angular performance
of most camera lenses can be approximated by a rectilinear map-
ping function, except for fisheye lenses which are better modeled
by equidistant, equal-area, stereographic or orthographic mapping
functions. However, even with full information about the camera
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Table III. The List of Parameters Used to Produce the Rendering Results in Figure 12
Figure Top Left Top Middle Top Right Bottom Left Bottom Middle Bottom Right
Water Drop Size 0.4mm 0.4mm 0.3mm 0.3mm 0.1mm 0.4mm
FOV 20o 100o 30o 10o 100o 30o

Lens Type Rectilinear Fisheye Rectilinear Fisheye Rectilinear Rectilinear
Background Color (107,114,118) (183,202,212) (172,172,172) (69,99,112) (141,180,223) (154,83,58)
Intensity 55% 100% 90% 80% 60% 80%
Illumination D65 D65 D65 D65 D65 D65 + Rayleigh

Fig. 13. Comparison of renderings of rainbows owed to different water drop radii between Lorenz-Mie (left region on each image) and our solution (right
region of each image). As the 0.4mm radius water drop is spherical, both algorithms lead to equal phase functions. As the particle gets bigger, the geometry
becomes non-spherical and therefore Lorenz-Mie is unable to simulate it, while our solution takes it into account. Notice, also, that the variation on the
secondary rainbow is quite unnoticeable compared to the variation on the primary rainbow, in agreement with the formation of twinned rainbows.

Fig. 14. The effect of different water drop radii on the apparent geometry
of the rainbow.

and its lens, it is also necessary to know the aiming point of the
camera relative to the direction of the Sun or the antisolar point. In
practice, some of this information is typically missing (along with
the obvious fact that the photographer is unlikely to provide any in-
formation about the size of the water drops causing the rainbows).
Consequently, the simulation parameters generally need to be ad-
justed by trial and error to get a good match with the original image.
The parameters used to produce the rendering results in Figure 12
are listed in Table III.

Figure 1 shows an overview of the different rainbow-related phe-
nomena our algorithm is able to simulate.

As discussed in Section 3.4, as water drops get larger they get
deformed due to the impact of air resistance. This drastically affects
the appearance of the final rainbow as shown in Figure 13. Producing
these physically accurate phase functions for large water drops is,
to our knowledge, not possible using any other method. Figure 14
shows the effect of the size of the water drop on the apparent
geometry of a full rainbow.

While the phase function for spherical water drops is invariant
to the inclination of the sun, nonspherical water drops produce
very different phase functions for each incident direction of light.
In other words, rainbows are actually the result of an anisotropic
phase function within an anisotropic medium. Figure 15 shows the
effect of the inclination of the sun on a 0.5mm nonspherical particle.
We have set up the viewing direction to be parallel to the direction
from the center of the sun, and we show the full (theoretical) 360◦

rainbow. For reference, the gray line indicates the horizon. Note
that a rainbow due to spherical water drops would look identical in
all these images.

Fig. 15. The effect of the inclination of the sun on a nonspherical water
drop (radius 0.5mm) alters the apparent geometry of the rainbow. This would
not be the case for spherical water drops. The gray line indicates the horizon
line.

Fig. 16. The effect of viewing a rainbow through different polarizing filters
(assuming 0.5mm radius nonspherical water drop).

Furthermore, our algorithm naturally takes into account polar-
ization. This enables us to explore the effects of different light
polarization filters on the perception of the rainbow given by a wa-
ter drop of arbitrary geometry. Figure 16 shows an example of this
for unpolarized viewing and for viewing through polarizing filters
with their transmission axes aligned horizontally and vertically.

Lastly, twinned rainbows can only be explained by a combination
of two types of water drops with different sizes where at least
one of them is nonspherical. Figure 17 shows a simulation of a
twinned rainbow caused by two showers of 0.4mm and 0.45mm
radius water drops. Note that slight changes in water drop sizes alter
their geometry and have a drastic impact on the resulting rainbow.
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Fig. 17. Left: Photograph of a rare twinned rainbow (reproduced
with permission c©Benjamin Kuehne - http://www.nachtwolke.de/temp/
regenbogen2.htm). Right: Twinned rainbow simulated using our algorithm,
generated from two showers of 0.4mm and 0.45mm radius water drops.

Similar results have been reported by simulating the light scattering
from ellipsoids using BowSim5. However, to our knowledge, this
is the first time that such a complex rainbow has been simulated,
based on light scattering from water drops with realistic shapes.

6. CONCLUSION AND FUTURE WORK

We have presented the first comprehensive model of rainbows suit-
able for computer graphics applications. We have validated it against
Lorenz-Mie theory for the case of spherical water drops, and shown
how it naturally overcomes the limitations of such theory.

However, our simulations have some limitations and can be im-
proved in the future. One of the main approximations of our model
is the diffraction filter. This filter introduces small errors around
and inside Alexander’s dark band, specially for small water drops.
Further work based on the application of the Huygens-Fresnel prin-
ciple can improve this component. For efficiency reasons, we also
make approximations for computing the traversed focal lines, al-
though a less efficient analytical solution might give more accurate
results as the water drop diverges from a spherical shape. Further-
more, by applying interpolation our simulations assume that the
wavefront is planar within each patch, which is an approximation
of the real phenomena. This can be easily improved by increasing
the resolution of the casting grid, although it would be interesting
to explore other types of interpolation (such as bicubic) and their
interpretations from the optical point of view. In addition, our ren-
derings use a homogeneous size and density distribution of water
drops which in turn will make all the features sharper and more no-
ticeable. Real-world imperfections would contribute to additional
blurring of the rainbow. This issue can be resolved by calculating
and combining a series of phase functions according to the water
drop size distribution. Finally, matching a reference photograph
with rendering results is a manual process. A potential extension
to our research would aim to use computer vision techniques to
automate this process.

This research also opens other potential lines of investigation.
Though we did not focus on performance in our work, we believe
that our algorithm could be adapted to the GPU, greatly acceler-
ating the phase function simulation. Further development on our
phase function simulator could lead to new and generalized global
illumination algorithms, taking into account phenomena such as in-
terference or diffraction. We foresee that a wide set of disciplines,
such as meteorology or remote sensing, could benefit from our
technique.

5http://www.atoptics.co.uk/rainbows/twin1.htm.
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