
0272-1716/00/$10.00 © 2000 IEEE

Andrew Glassner’s Notebook
http://www.glassner.com

IEEE Computer Graphics and Applications 99

Soap bubbles are fragile, beautiful phenomena.
They’re fun to make and play with, and their geom-

etry is as clean and elegant as anything in nature, which
makes them particularly suited to computer graphics.

In the last issue I discussed the nature of soap films.
These thin sheets of soapy water have less surface ten-
sion than water itself, so they can billow out into curved
surfaces like bubbles. In this column I’ll talk about where
a bubble’s beautiful colors come from, the geometry of
bubble clusters, and how to make bubbles in a 3D mod-
eler. I’ll use some of the material discussed in previous
columns: reflection, refraction, and Snell’s Law
(January/February 1998 and March/April 1998) and
complex numbers (January/February 1999).

Making waves
The easiest way to talk about bubble colors is to think

of light as a wave phenomenon. As you may recall, light
sometimes appears to behave as a wave and sometimes
as a particle.

This wave/particle duality has been a source of much
philosophizing in physics. In computer graphics, we typ-
ically take a pragmatic course and treat light exclusive-
ly as a collection of particles. We do this because the
particle (or photon) interpretation has simpler and more
intuitive mathematics and physics, and makes our pro-
grams easier to write and faster to run. Although some
wave-based rendering algorithms exist, most fall firm-
ly in the particle camp. The particle interpretation is usu-
ally a good choice because it covers almost all of the
normal phenomena associated with light.

Almost all. One of the things that the particle model
doesn’t explain very well is interference—the source of
soap bubble colors, often called interference colors. To
set the stage for discussing interference, I’ll use a classic
piece of physics-lab gear called the ripple tank (or, if you
have a big one, a wave tank). Figure 1 shows the idea: a
basin filled about halfway with water. Then you plunge
a heavy, long object into the water at one end, causing
a ripple. In Figure 1, the object is a cylindrical pipe, hang-
ing from the end of a rotating arm.

If you lower the pipe into the water once and pull it
right back, you’ll get a ripple spreading out from the
point of impact. Of course, in the real world the ripple
will bounce off the sides and far end of the basin and
come back. Although those reflections are interesting,
they introduce a lot of complexity without illuminating

the points I want to make, so I’ll just ignore them.
To get an endless succession of waves in the tank,

plunge the cylinder in repeatedly at just the right rate.
Each time the pipe drops into the water, it creates a
wave, which starts to spread outward. If you measure
the distance from the crest of one wave to the crest of
the next one—as they move down the length of the
tank—you’ll find that that distance doesn’t change as
the wave moves out. This distance is called the wave-
length. As we watch the wave move, it’s like a distur-
bance moving through the water.

If we set a piece of foam on top of the water as the wave
goes by, we’ll see the foam rise up and down. If only one
wave goes by, the foam starts at the normal water level,
rises, drops, and then returns to its starting height. We call
any particular point along the cycle of one wave its phase.
The number of times the foam bobs up and down in a
given interval of time is called the frequency of the wave,

Andrew
Glassner

Soap Bubbles: Part 2 ________________________________

1 (a) A ripple
tank. (b) The
block has just
plunged into
the water,
creating a wave.

(a)

(b)

since it describes how frequently the water rises and falls.
There’s a simple mathematical relationship between the
frequency and the wavelength, so both words are basi-
cally describing the same wave characteristic.

To make a never-ending series of equally spaced
waves, we just need to drop the cylinder back into the
water at the end of the previous wave. That is, just as
one full wave has spread out from the cylinder, we inject
a new one.

Let’s now create two side-by-side wave machines, as
in Figure 2. In Figure 2a, I’ve got both of them running
together, as though they were connected as a single bar.
Suppose that each one creates a wave that is 1-inch high.
The wave from each plunger spreads out into the tank,
and the two eventually overlap. We can see from the fig-
ure that in the overlap region, the wave looks taller than
the wave due to either source. Why is that?

Figure 3a shows the idea. When two waves are in the
same place at the same time, it turns out that they add
up—the composite wave is just the sum of the two com-
ponents. This property of the real world is called super-
position. In Figure 3, the two waves are in sync with each
other, so the high point of one wave coincides with the
high point of the other. This is called constructive inter-
ference; we also say that the waves are in phase or rein-
forcing each other. The result looks like a single wave
with the same wavelength, but twice the height.

Now let’s get them going in exactly opposing motion.
When one plunger goes up, the other goes down. Figure
4a shows the wave tank—the region where the two
waves overlap is flat. Figure 5 shows a schematic. What’s
happening is that the two waves exactly cancel each
other out. We say that these two waves are undergoing
destructive interference, or that they’re out of phase, or

Andrew Glassner’s Notebook

100 November/December 2000

2 (a) Two ripple makers side by side, working in uni-
son. (b) The wave due to one machine. (c) The wave
due to the other.

(c)

(b)

(a)

3 (a) and (b) Two equally high waves in phase. (c)
They constructively interfere to create a new wave with
twice the height.

(a)

(b)

(c)

canceling each other. Figure 4b shows another way to
achieve this, where the two machines go up and down
in unison, but the wave-making pipes have been dis-
placed by a half wavelength relative to each other.

When two waves of the same wavelength aren’t exact-
ly in phase or out of phase, the result is somewhere
between perfect reinforcement and perfect cancellation.
The rule of thumb is that the smaller the phase differ-
ence between the waves, the larger the resulting wave.

The reason for looking at these ripple tanks is because
they give us an analogy for light waves. Light can be con-
sidered a form of radiation, traveling through the air
just like water waves travel through water. Our eyes are
sensitive to the wavelengths from 380 to 780 nanome-
ters (nm), corresponding to the spectrum from red to
violet. Higher amplitudes (or energy) in the wave cor-
respond to brighter perceived light. When two light
waves travel in the same location and direction and are
in phase, they reinforce each other just like the water
waves. If they’re out of phase, they cancel each other
out. Since light waves are represented mathematically
as complex sine waves, we speak of the phase of a wave
as a number of radians from the start (a full sine wave
contains 2πradians, equivalent to 360 degrees).

Normally these interference effects are all but invisi-
ble in our daily world, but they do show up in special
cases. One of those cases, of course, is at the surface of
a soap bubble. Let’s see how that happens.

Interference colors
Consider a little piece of soap film, as in Figure 6 (next

page). A beam of light, from direction I, strikes the upper
surface. Some of that light is reflected in the direction
R, while the rest is transmitted into the film in direction
T. On the bottom of the film, some light passes into the
inside of the bubble in direction T2, while the rest is
bounced back upward in direction R2. This light hits the
top of the film, where some is reflected back into the film
in direction R3, while the rest comes back into the air in
direction T3. In the January/February and March/April
1998 issues, I talked about the geometry of reflection
and refraction, so here I’ll just summarize the important
result: T3 is parallel to direction R. So the light traveling
on R is going to interact with the light on T3. Like the
waves in the ripple tank, the resulting combined light
will depend on the wavelength and phase of each con-
stituent wave.

Let’s assume that the light coming in along I has a
wavelength of λ (measured in nanometers). The film has
thickness w, and the index of refraction of the film is η
(about 1.4 for soap films). Finally, the incident angle
between I and the surface normal N is θi. I’ve identified
a few points in the figure. The light that travels through

IEEE Computer Graphics and Applications 101

(c)

(b)

(a)

4 (a) The two
ripple makers
out of
synchrony.
(b) Equivalently,
they’re in syn-
chrony but the
bars are shifted
by a half wave-
length.

5 (a) and
(b) Two equally
high waves out
of phase.
(c) They
destructively
interfere and
cancel each
other out.

(a) (b)

the film and exits parallel to R will be phase-shifted with
respect to the light that simply reflected off the surface.
As we saw earlier, the phase difference between these
two waves will determine whether they reinforce or can-
cel each other, entirely or partly. Thus our goal is to deter-
mine the phase difference between the light on R and the
light on T3. This has two components: first, the extra dis-
tance traveled on the longer path, and second, an opti-

cal phase shift at the interface. Let’s look at these in order.
We want to find the total difference in distance taken

by the two beams. If we divide that by the wavelength,
it will tell us how much of a cycle the light will pass
through along this journey. In Figure 7 I marked an addi-
tional point J. Now we can talk of two side-by-side
beams of light—one travels from A to J, the other from
A to B to C. The geometric difference in distance is
AB +BC −AJ (as usual, I’ll write AB for the distance from
A to B). If we find this difference and convert it into the
number of radians it represents for that wavelength,
we’ll have the phase difference, and thus the ultimate
brightness of the combined light coming from the film.

You may recall that light travels more slowly in a
medium that’s denser than air, such as soapy water.
Because it’s going more slowly, it passes through more
of its cycle when going through the water than when
passing through an equivalent distance of air. We model
that effect by multiplying the traveled distance by the
index of refraction, which scales up the length to the
equivalent amount of distance the wave would have cov-
ered in air in the same amount of time.

This part of the phase difference is thus
d = η(AB + BC) − AJ. A little trig lets us figure out the
value for d. Referring to Figure 8a, we can see that
cos θt = w/AB, and that AB = BC. That takes care of the
first term, so let’s find AJ. Since angle ∠ ACJ = θi, we see
that AJ = AC sin θi. We’ll use Snell’s Law to replace sin θi

with its equivalent η sin θt. We also see from Figure 8b
that tan θt = (AC/2)/w, so AC = 2w tan θt. Plugging this
value for AC into the expression for AJ we just got and
putting it all together, we find

To my eyes, that looks pretty complicated. We can sim-
plify it quite a bit with a few steps of rearranging and
substituting:

This is much better. Now we’ve taken care of the first
part of the phase difference.

The second part is the optical phase shift I mentioned
above. It turns out that when light moves from one medi-
um to a medium of higher refractive index (for exam-
ple, from air into soapy water), it undergoes a phase shift
equal to half its wavelength (interestingly, this doesn’t
happen on the way back out). So we need to add λ/2 to
the difference calculated above (since the light goes
from air to soap at point A), giving us the effective opti-
cal path length (or EOPL):

EOPL = d + λ/2 = 2wη cos θt + λ/2

d w

w w

w

t

t

t

t
t

t
t

t

= −










= −() =

=

2
1

2
1

2

2

2

2 2

η
θ

θ
θ

η
θ

θ η
θ

θ

η θ

cos
sin
cos

cos
sin

cos
cos

cos

d

w
w t t

t
= −2

2
η

θ
θ η θ

cos
tan sin

Andrew Glassner’s Notebook

102 November/December 2000

NI R

w

T

R2

T2

T3

R3

6 Light at a thin film arrives along direction I. After
several interactions, light leaving in direction T3 is paral-
lel to light leaving in direction R, so the two waves inter-
fere. All angles equal to the incident angle θi are gold. All
angles equal to the transmitted angle θt are blue.

A

J

w

B

C7 Some labels
for Figure 6.

A

w w

B

(a) (b)

B

C
AC/2

8 Geometry
associated with
Figure 7. The
blue wedges are
angle θt. (a) cos
θt = w/AB and
(b) tan
θt = (AC/2)/w.

Whew! After all that work, the payoff had better be pret-
ty good. Happily, it is—this last equation is the key to
understanding interference color. It makes up the heart
of the soap-film shader presented later in the column.

Because it’s so important, let’s discuss this result for
a moment. For any given thickness w and wavelength
λ, we can calculate the EOPL from A to C —remember
that this is the effective extra distance traveled by the
light that goes through the film compared to the light
that bounces off the top. If this distance is exactly equal
to some multiple of the wavelength, then the resulting
two beams will be in phase and interfere constructive-
ly. Visually, this results in light that combines the ener-
gy in the two beams. If the distance is exactly equal to
half a wavelength, then the two waves will be exactly
opposite in phase, and will cancel each other out.
Visually, we’d see blackness, or the absence of light.
Since the color of light is a function of its wavelength,
we would expect that for different values of w we would
see one color looking especially bright, others less so,
and some colors completely missing.

That’s exactly what happens in soap films. If there
were no extra distance to be covered, the λ/2 term
would shift one wave by exactly a half wavelength with
respect to the other, causing them to cancel each other
out. If that extra distance is an exact multiple of the
wavelength, this condition still holds. On the other
hand, if the extra distance is an exact multiple of the
wavelength plus a half wavelength, then we have per-
fect constructive interference, or reinforcement.

Suppose we illuminate a soap bubble with white light
just above our heads (this is light that contains all wave-
lengths). After bouncing off the bubble, some wave-
lengths will be reinforced, others will be canceled out,
and most will be attenuated to some degree. The final
color will be the sum of all the noncanceled wave-
lengths of light.

If we create a vertical, flat soap film, then the effect
of gravity is to pull down the water in the film, making
a wedge that’s thicker at the bottom than the top. The
result is a sequence of horizontal, colored bands as the
thickness gradually increases along the height of the
film, shown in Figure 9.

You’ve probably wondered about the light in Figure 6
that follows path R3. Doesn’t it then bounce off the inner
surface and then return to the top of the bubble, where
some light will escape into the air? Wouldn’t that light
also affect the color we perceive? The answer is yes to
both questions. These higher-order terms can be visible
under the right circumstances, but they have a lot less
energy in them than the first bounce. It’s easy to find their
phase shift—after k bounces, the effective path length
(including the phase change on entering the film) is

EOPLk = kd + λ/2 = 2kwη cos θt + λ/2

This wraps up our discussion of interference color. To
summarize, we treat light as a wave. When it strikes the
outside of the bubble, some bounces right back. The rest
of the light enters the film and eventually returns to the
air, where it will interfere with the light that bounced
off directly. The film’s thickness and the light’s wave-

length determine the phase shift of this second beam,
and thus the intensity of the final, combined light. This
process happens in parallel for every wavelength of
light. So some wavelengths get cranked up and others
get shut down, giving rise to a pattern of bright colors
over the bubble’s surface.

Pairs of bubbles
In my last column we found that one of the proper-

ties of soap films is that when they meet in triples, each
pair of films forms a 120-degree angle. Let’s use that
property to discover the geometry of a pair of merged
bubbles. We’ll look at everything in 2D to keep it
simple.

Figure 10a shows the basic idea. We start with two
bubbles, A and B, with radii rA and rB where rA > rB. When
they come together, their common wall merges. Figure
10c shows that the 120-degree angle at top and bottom
causes the common wall to bulge into bubble A. Last time
we discussed how soap films want to minimize their area.
You may recall that a sphere is the shape with the small-
est surface area that encloses a given volume. That’s why
bubbles are spherical. This means that the common wall
is spherical as well (or, in the 2D case, circular).

Since this common wall is a piece of a sphere (or cir-
cle) itself, we’ll say it has center C and radius rC; sym-
metry leads us to place C on the line AB, and the bulge
into A places C on the B side of the line. So the question

IEEE Computer Graphics and Applications 103

0.2

0.4

0.6

0.8

0
0

1

2000

9 A soap-film
wedge. (a) The
interference
colors. (b) The
width of the
film as a func-
tion of height.
Notice that the
shape isn’t
linear.

(a) (b) (c)

A B CA B

10 (a) Circles A and B (notice rA > rB). (b) The circle with
radius rC that forms the interface. (c) The joined pair.

now is to locate point C, or find radius rC (either one will
give us the other).

Figure 11a shows the essential geometry. The three
bubbles meet at point M. I’ve also marked three tangent
lines at M as TA, TB, and TC, which are each tangent to
their namesake circle. We’ll find that it’s straightforward
to find rC once we’ve labeled everything in sight.

Let’s dig in. I’ll number our results so you can see how
Figure 11b gets filled in. We know that triplets of films
always meet at 120 angles, so ∠ TAMTC = 120 degrees.
By construction, ∠ TAMA = 90 degrees. We can find
∠ AMTC = ∠ TAMTC − ∠ TAMA =30 degrees, which is result
1. By similar arguments, ∠ TBMTC = 120 degrees, and
∠ TBMB = 90 degrees. So ∠ BMTC = ∠ TBMTC − ∠ TBMB =
30 degrees, which is result 2. To finish up what’s hap-
pening at M, we observe that ∠ CMTC = 90 degrees, and
∠ BMTC = 30 degrees, so ∠ CMB = ∠ CMTC − ∠ BMTC =
60 degrees, which is result 3.

We’ve finished most of the heavy lifting. Now I’ll pull
a rabbit out of my hat and create an auxiliary line. In
Figure 11b I drew a line parallel to AM passing through
point B. The line cuts side MC at point D. By construc-
tion, ∆BDC is similar to ∆AMC. Because BD and AM are
parallel, ∠ AMB = ∠ MBD. Since ∠ AMB = 60 degrees,
∠ MBD = 60 degrees, which is result 4.

From results 3 and 4, we see that ∠ BDM = 60 degrees
(this is result 5), so ∆BDM is equilateral, meaning all three
sides are the same length. Since BM = rB, that means
BD = rB and MD = rB as well (these are results 6 and 7).

Because ∆BDC is similar to ∆AMC,

Observing that MD = MC − DC, we can use this value for
DC to find:

Dividing both sides by rC rB, we get our final result:

This equation expresses the essential piece of geometry
for a pair of bubbles. Given the radii rA and rB of the two
bubbles that join up, we can compute the radius rC of
the bubble that forms on their common wall.

Bigger clusters of bubbles are handled the same way.
Just take them pairwise and find the common wall for
each pair.

Triples of bubbles
Enough theory! Let’s make some bubbles!
There are two steps to bubble making on the com-

puter: computing the geometry and running the shad-
er. I’ll discuss the geometry first and the shader in the
next section.

I’ll assume that you have access to some form of high-
level modeling language. Most of the popular commer-
cial 3D packages have a scripting or plug-in system of
some kind. To make my bubbles, I wrote a little model-
ing plug-in script for 3D Studio Max that makes clusters
of triples. I just dial in the three radii I want, and it com-
putes all the pieces and cuts them up properly.

In the following, I’ll use a generic pseudo-code for
most of this description, since the various popular pro-
grams and shading languages vary in their syntax.
Figure 12 shows the code. For clarity, I used some paren-
theses that aren’t strictly necessary, and I also included
some operations with the origin (at point [0, 0]), which
have no effect, but illuminate the logic.

The top of Figure 12 features three little utility func-
tions—we’ll see their purpose in a moment.

Upon entering the routine on line 5, I do a little book-
keeping and swap around the radii so that they’re sort-
ed rA > rB > rD. For simplicity, I left that out and replaced
it with a comment.

The first real job, starting on line 9, is to determine
the radius of bubble C that forms the wall between bub-
bles A and B. It’s just a matter of using the geometry in
Figure 11b. I’ll place point A at the origin, and points B
and C on the positive X-axis. Since all we have are the
radii, the first job is to determine the distance from A to
B. We know AM = rA and MB = rB. Writing θM1 for angle
∠ AMB, the cosine rule tells us that

AB2 = rA
2 + rB

2 − 2rA rB cos θM1

Life is good to us because we can see from Figure 11b
that angle θM1 is 60 degrees, so cos θM1 = 1/2. That can-
cels the 2, leaving us with

1 1 1
r r rC B A

= −

MD MC DC

r r
r r
r

 =

B C
C B

A

−

= −

BD
AM

DC
MC

DC
MC BD

AM
r r
r

=

= × = C B

A

Andrew Glassner’s Notebook

104 November/December 2000

(a)

(b)

M

BA CrB

rC

TB

TC

TA

rA

M

B

D

A C

rB
rB

rB

r

TB

TC

TA

rA
12 3

4

5
C

11 (a) Two bubbles meeting at point M. All three
bubbles meet at 120 angles—the three shaded angles
are all 120 degrees. (b) The geometry associated with
two bubbles. The pink angles are 30 degrees, and the
green angles are 60 degrees. The numbers refer to the
steps in the derivation in the text.

This is what our little helper function getDist com-
putes for us. Now we want to find rC, and we know from
the last section that

Multiplying both sides by rArB and rearranging for rC

gives us

which is what the function getR returns. Line 10 squir-
rels this away as rC. Finally, we want to find the position
of point C. We know it lies on the line from A through B,

and we need to find the distance from A to C. Writing
θM2 for angle ∠ AMC in Figure 11b and applying the
cosine rule again, we get

We know that θM2 is 120 degrees, so cos θM2 = −1/2.
That cancels the 2 and changes the sign on the last term,
resulting in

This is what our helper function getD computes, and
we save this value in dAC on line 11.

Nothing in this process has been special for points A
and B, so we repeat the same calculations to find the
centers and radii of the other two circles.

Now we need to locate all the centers. As I mentioned
before, to make life easy I place A at (0, 0). B is at
(dAB, 0). C is also easy to place, at (dAC, 0). Now things
get interesting, since we need to include the third bub-

 AC r r r r A C A C= + +2 2

 AC r r r r M
2

2 2 22= − + A C A C cos θ

r

r r
r r

C
A B

A B
=

−

1 1 1
r r rC B A

= −

 AB r r r r = A B A B2 2+ −

IEEE Computer Graphics and Applications 105

1. real getR(real R, real r) =
(R*r)/(R - r)

2. real getD(real R, real r) =
sqrt((R*R) + (r*r) + (R*r))

3. real getDist(real R, real r) =
sqrt((R*R) + (r*r) - (R*r))

4.

5. makeBubble(rA,rB,rD) {

6. — swap to make rA > rB > rD

7.

8. — use A and B to find bubble C

9. dAB = getDist(rA, rB)

10. rC = getR(rA, rB)

11. dAC = getD(rA, rC)

12.

13. — use A and D to find bubble E

14. dAD = getDist(rA, rD)

15. rE = getR(rA, rD)

16. dAE = getD(rA, rE)

17.

18. — use A and B to find bubble F

19. dBD = getDist(rB, rD)

20. rF = getR(rB, rD)

21. dBF = getD(rB, rF)

22.

23. — locate D at distance dAD,

rotate by angle BAD

24. thetaA = acos(((dBD*dBD)-

(dAB*dAB)-

(dAD*dAD))/(2*dAB*dAD))

25. dCenter = [dAD*cos(thetaA), -

dAD*sin(thetaA)]

26.

27. — locate E on the line D-A

28. normDminusA = normalize(dCenter

- [0,0])

29. eCenter = [0,0] + dAE *

normDminusA

30.

31. — locate F on the line D-B

32. normDminusB = normalize(dCenter

- [dAB, 0])

33. fCenter = [dAB,0] + (dBF *

normDminusB)

34.

35. — make bubble spheres

36. bA = sphere([0,0], rA)

37. bB = sphere([dAB, 0], rB)

38. bC = sphere([dAC, 0], rC)

39. bD = sphere(dCenter, rD)

40. bE = sphere(eCenter, rE)

41. bF = sphere(fCenter, rF)

42.

43. — use CSG to make the cluster

44. — build the three outer sections

45. secA = bA - (bB + bD)

46. secB = bB - (bA + bD)

47. secD = bD - (bA + bB)

48.

49. — build the inner walls

50. secC = (bC inside bA) - bD

51. secE = (bE inside bA) - bC

52. secF = bF inside (bD intersect bE)

53.

54. cluster = group(secA, secB,

secC, secD, secE, secF)

55.

56. — delete temporary objects

57. delete(bA, bB, bC, bD, bE, bF)

58.

59. return(cluster)

60. }

12 Pseudo-code
for modeling a
cluster of three
soap bubbles.

Andrew Glassner’s Notebook

ble centered at D. Take a look at Figure 13 for the fol-
lowing geometry.

I start with the determination of point D on line 23. I
build triangle ∆ABD as in Figure 12 and find the angle θA

with the cosine rule:

BD2 = AB2 + AD2 − 2(AB) (AD) cos θA

Line 24 shuffles this around to compute cos θA. Now
I have the polar coordinates of D: it’s at an angle of θA

clockwise from the X-axis through A, and at a distance
of dAD. I find the X and Y values for D using the standard
trig for polar coordinates on line 25.

To find E, I first build a unit length vector from A to D.
Then I scale that by the distance from A to E, and voila!
For clarity in the pseudo-code, I explicitly include the
coordinates of A at [0, 0]; of course, in practice it’s rea-
sonable to leave that off. Locating F is done in the same
way, except the vector is from B to D and the distance is
from B to F. This one I need to add to B because it’s not
at the origin.

By the way, you may notice from Figure 13 that it
appears that points C, E, and F—the centers of the circles
forming the internal walls—all lie on a straight line.

They do! If you like solving geometry problems you
might want to give it a whirl proving it yourself—it
would be too big a detour to prove it here.

Now it’s just a lot of constructive solid geometry
(CSG) slicing and dicing, as in Figure 14. The basic idea
is to make six spheres—one for each the center sphere
we just computed. Thanks to the symmetry of the situ-
ation, we have a few choices for how to isolate the nec-
essary parts of these spheres. For example, to extract
the right piece of bubble A, remove from it anything
inside of B or D. Similarly, to get the right part of C,
choose the surface that’s inside bubble A, but outside
of bubble F. Figure 14 shows a variety of recipes for
building the cluster.

When you’re done, make sure to clean up any loose
vertices or disconnected edges that might have been pro-
duced by all this CSG surgery.

All the pretty colors
The last step to making bubbles is to make a soap-

bubble shader. As almost always seems to be the case,
writing a good shader seems to involve some judicious
trading off of accuracy and realism with approximations
and pragmatism. I mean, we could simulate all of this
at the molecular or even atomic level, but it wouldn’t
show up in the results. The trick is to find a nice balance
between simplicity, efficiency, and verisimilitude.

Some shaders kind of write themselves, and some
involve personal choices. Here I’ll describe my approach
to a soap-film shader, which is actually pretty easy given
the equations we derived earlier. A few more steps get us
to a simple, accurate formula for efficient computing.

We found that the effective extra distance covered by
the ray that goes into the bubble and then comes back
out is given by

2wη cos θt + λ/2

We find the phase change, δ, or the number of radians
that this distance represents, by multiplying by the num-
ber of radians in a cycle (2π) and dividing by the length
of one cycle (λ):

Now that we know the phase shift δ, how can we com-
pare the combined amplitude of the two waves that
interfere with each other? When treating light as a wave,
the magnitude of the wave is a complex number rather
than the single real number that’s often used in geo-
metrical optics. Let’s assume that the amplitude of the
incident wave is given by the complex number A. If this
wave is delayed by δ, then the phase-shifted wave is Aeiδ.
The amplitude of the combined wave Ar is thus just the
sum of the reflected wave and the delayed one:

The intensity of light is the square of the wave’s mag-
nitude. If A = (a + bi), we want a2 + b2 (remember
i=√−1). There’s an easy way to find this. For any com-

 A A Aer
i = + δ

δ π

λ
η θ λ= +()2

2 2w tcos /

106 November/December 2000

A B C
D

E
F

D

F

A B
C

E

θA

(a) (b)

13 Geometry for the cluster of three bubbles.

(a) (b) (c)

(d) (e) (f)

14 CSG to make a triple of three bubbles as in Figure 13. The lavender
circle is the one we start with. Then we remove anything inside a red circle.
If there are green circles, we keep only what’s inside them. These expres-
sions are one way to make the necessary pieces. (a) A − (B + D), (b) B −
(A + D), (c) D − (A + B), (d) (C in A) − D, (e) (E in A) − B, and (f) F in (D and E).

plex number ω =(a + bi), we can write ω= (a− bi) and
compute the product ωω = a2+b2 (ω is called the com-
plex conjugate of ω). Let’s find the intensity Ir of the
reflected wave:

Now recalling that cos δ=(eiδ+ei−δ)/2, we can write

Ir = 2A2 (1 + cos δ)

We can use the half-angle formula (1 + cos δ) =
2 cos2 (δ/2) to write

Ir = 4A2 cos2(δ/2)

That’s pretty simple, but we still have to find A. We do
know Ii, the intensity of the incoming light. The link
between Ii and A is given by Fresnel’s formulas, which tell
us how much light is reflected off a surface for a given
angle of incidence. They’re straightforward, but a little
bit messy to look at. (To find them, and the real physical
data to make them work right, look in just about any
book on modern optics or modern rendering—some
suggestions appear in the “Further Reading” sidebar.)

Fresnel’s equations are implemented in almost every
modern renderer. They’re particularly convenient in
graphics because you can pretty much just type them in
and use them right away. But if you don’t want to imple-
ment them for real, you can create a cheap approxima-
tion by scaling the reflectivity by the incident angle’s

cosine. When the incident angle is almost 0, there’s basi-
cally no reflection; when the angle is nearly 90, there’s
nearly total reflection.

Given a reflectivity Rf from Fresnel, we can write
A2 = IiRf. So our equation becomes

Ir = 4 IiRf cos2(δ/2)

If we plug in half our value from δ above, we get

where I substituted cos(θ + π/2) = sin(θ).
Ta-da! This formula is all we need to make a soap-film

shader. Figure 15 gives the basic steps.

I I R w

I R w

r i f t

i f t

= +







=







4
2

2

4
2

2

2

cos cos /

sin cos

π
λ

η θ π

π
λ

η θ

I A A A Ae A Ae

A e e

r r r
i i

i i

= = + +
= + +

−

−

()()

()

δ δ

δ δ2 2

IEEE Computer Graphics and Applications 107

1. a = 2 * PI * w * eta *

cos(theta_t);

2. for (index=0; index<81;

index++) {

3. lambda = 380. + (400. *

(index/80.));

4. sina = sin(a/lambda);

5. ref[index] = 4. *

incident[index] *

fresnel[...] * sina * sina;

6. }

15 Psuedo-
code for my
soap-film
shader.

Three books that I mentioned in the last issue
continued to be useful to me in preparing this
column. They are Soap Bubbles: Their Colors and
Forces Which Mold Them by C.V. Boys (Dover
Publications, New York, 1959), The Science of Soap
Films and Soap Bubbles by Cyril Isenberg (Dover
Publications, New York, 1978), and Demonstrating
Science with Soap Films by David Lovett (Institute of
Physics Publishing, Bristol, 1994).

You can see some lovely soap-bubble images
rendered by John Sullivan with a custom
RenderMan shader on the Web at http://www
.math.uiuc.edu/~jms/Images. There are lots of
interesting Web sites that run the gamut from
bubble mathematics to how to make good soap-
film solutions. You might want to take a look at the
Bubblesphere at http://bubbles.org/index.htm,
the Bubbles Theme Page at http://www.cln.org/
themes/bubbles.html, and Maarten Rutgers’ page
at http://www.physics.ohio-state.edu/~maarten/
work/soapflow/soapintro/basicsoap.html.

Some computer-graphics articles on interference
colors are “Newton’s Colors: Simulating

Interference Phenomena in Realistic Image
Synthesis” by Brian E. Smits and Gary Meyer (Proc.
Eurographics Workshop on Photosimulation, Realism
and Physics in Computer Graphics, June 1990), “Ray
Tracing Interference Color” by Maria Lurdes Dias
(IEEE Computer Graphics and Applications,
March/April 1991), “An Approach to Geometrical
and Optical Simulation of Soap Froth” by Isabelle
Icart and Didier Arquès (Computers & Graphics,
June 1999), and “Deriving Spectra from Colors and
Rendering Light Interference” by Yinlong Sun, F.
David Fracchia, Thomas W. Calvert, and Mark S.
Drew (IEEE Computer Graphics and Applications,
July/August 1999).

For more information on Fresnel formulas and
color computations (including converting XYZ to
RGB and creating colors from triples), you can look
at most any modern text on rendering in computer
graphics. Two good places to start are Advanced
Animation and Rendering Techniques by Alan Watt
and Mark Watt (Addison-Wesley, New York, 1992)
or my own book, Principles of Digital Image Synthesis
(Morgan-Kaufmann, San Francisco, 1995).

Further Reading

We begin with incident light represented as a sam-
pled spectrum. In my renderer I associate an amplitude
with every 5 nm from 380 to 780 nm, creating an array
with 81 elements (ways to get a spectrum from a color
are available from the “Further Reading” sidebar). The
shader is given this incident light and the geometry of
the intersection.

The shader receives values for w and cos θt from the
system, derived from the scene information. Roll this all
together into a temporary variable in line 1. Now step
through the incident light array, compute each term one
by one, and store them in the reflection array.

Figure 16 shows the result of passing a flat, white spec-
trum through a 500-nm film. Note that this reinforces
some wavelengths and cancels others entirely.

That’s pretty much it for the basic shader—I promised
it would be simple! My version is an easy plug-in for 3D
Studio Max, which I used to render the pictures in this
article. Once you’ve computed the spectrum, you’ll need
to convert it to RGB. The usual way to do this is to run the
spectrum through the International Commission on

Illumination (Commission Internationale de L’Eclairage,
or CIE) color-matching functions to get an XYZ color-
space representation, and then convert those XYZ val-
ues to RGB for a particular monitor. This is standard
computer-graphics stuff that you can find in any graph-
ics textbook (see the “Further Reading” sidebar).

Let’s look at the shader in action. Figure 9a shows a
vertical film in front of a black background. Simulating
the pull of gravity on the liquid, the film forms a wedge
60-nm thick at the top to 2,460 nm at the bottom. The
wedge isn’t linear; Figure 9b shows the thickness over
the height of the film. We’re looking directly at the film,
which is illuminated by a light on our forehead.

Note that the wedge is black at the
top. Remember that the light shifts
λ/2 when it enters the film. The
additional distance within the film is
negligible at the top, so the light that
passes through the film is just about
λ/2 shifted from the reflected light,
resulting in total destructive inter-
ference. As we work our way down
the film, we first see the very bright
colors we associate with soap bub-
bles, each resulting from some nar-
row band of light being subtracted
out from the white light. When the
film gets thicker, the time it takes the
light to pass through and come back
out lasts longer than the amount of
time that the incident light stays
coherent. That is, by the time the
light comes back out of the film, the
incident light is at a different, ran-
dom phase. This effectively knocks
out the interference effects, which is
why we typically don’t see interfer-
ence in thicker, transparent objects,
such as a piece of window glass.

Let’s look at a very simple soap
bubble—a single sphere. For now,

let’s disregard the Fresnel term, which modulates the
strength of the reflection based on the angle of inci-
dence. If the bubble has just formed, then the bubble is
a spherical shell with uniform thickness. Figure 17a
shows an example of a bubble with a radius of 5,000 nm
and a thickness of 500 nm. I modeled this by placing an
air-filled sphere of radius 4,000 nm inside a soap-filled
sphere of radius 5,000 nm.

I’m assuming that we’re looking at the sphere in a
room that’s filled with light. So at each point on the bub-
ble, we’re looking at light that arrived from somewhere,
split into two (some bouncing off the surface and some
entering the film), and then rejoined to interfere and
arrive at our camera. The different colors are due entire-
ly to the different path lengths. For example, the light
passing through the film in the middle of the picture
arrives about normal to the surface, so it passes (twice)
through 500 nm of film. But the light toward the out-
side arrives at a more oblique angle, and thus passes
through more film.

After the bubble has floated around for a moment, it

Andrew Glassner’s Notebook

108 November/December 2000

17 (a) A bub-
ble of radius
5,000 nm and
thickness 500
nm. (b) After
draining, the
thickness is 300
nm at the top
and 700 nm at
the bottom.

(a) (b)

18 Adding
noise to Figure
17 to simulate
the sloshing
around of liquid
as the bubble
moves in the air.

500400 600 700

20

40

60

80

100

120

16 The result
of passing a
white spectrum
through a
500-nm film.

IEEE Computer Graphics and Applications 109

starts to drain—that is, the liquid starts to move to the
bottom. We can model this by moving the air-filled
sphere upward. Figure 17b shows the result after the
bubble has drained a bit, so the film is 3,000 nm at the
top and 7,000 nm at the bottom. You can start to see the
variation in color due to the draining.

Why don’t we see bubbles looking like this in the real
world? It’s because our perfect spherical shells don’t
match the geometric reality of soap bubbles, which are
liquids sloshing around in the air. Let’s simulate that slosh-
ing fluid with some noise. Figure 18 shows what happens
if we add increasing amounts of noise to the thickness
computation. Finally, Figure 19
incorporates the Fresnel term.
Remember that we’re looking at the
bubble against a black background.

All together now
The only thing left is to bring

together the model and the shader.
Figures 20 and 21 show some bubble
clusters modeled and shaded using
these techniques. Note the reflection
of the four-paned window—I think
it’s a law that all bubble pictures
reflect a window.

There’s something very attractive
to me about understanding nature
well enough to create an accurate
simulation. But I need to point out
that at the very last step of the shad-
er, I introduced some noise to
account for the variation in thick-
ness that normal bubbles experi-
ence when they’re in the air. This
noise had the effect of basically
scrambling all of our careful calcu-
lations, giving us just a bunch of
wild swirls of colors. Now if we’d
done a real fluid-dynamics simula-
tion we’d have something accurate,
but noise is just noise.

This tells us how to take a giant
shortcut in our bubble shaders.
Instead of computing the thickness,
adding noise, and computing the
interference colors that result, we
can simply take a gradient of bright
colors, swirl them up with noise,
and map them onto the surface. The
result will look a lot like a real bub-
ble. As long as the colors and noise
were well controlled, you wouldn’t
be able to tell the difference between
a properly computed shader and a
total hack. I’m of two minds about
this. One the one hand, it seems kind of sad that a sim-
ple hack can look as good as a proper simulation. On the
other hand, I think that’s kind of cool. ■

Readers may contact Glassner by e-mail at
andrew_glassner@yahoo.com.

19 Including
the Fresnel term
to Figure 17.

20 Two bubble
clusters: a pair
and a triplet.

21 A swarm of
bubbles.

